Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micr...Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species.展开更多
Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Edi...Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".展开更多
Increase grain yield potential is one of the most important objectives of any cereal crop breeding program. To efficiently develop superior rice lines by the introgression of favorable alleles for yield and yield comp...Increase grain yield potential is one of the most important objectives of any cereal crop breeding program. To efficiently develop superior rice lines by the introgression of favorable alleles for yield and yield component traits, a strategy of alternate phenotype–genotype selection was used. The present study aimed to(i) investigate the allelic diversity of loci associated with major yield-component traits and(ii) phenotype and genotype advanced populations derived from crosses between NERICA-L-20 and Giza178 for yield component traits using agro-morphological descriptors and GRi SP polymorphic markers to select superior high-yielding rice lines. A total of 100 F2:3 progeny were selected from 1000 F2 plants and genotyped with 16 polymorphic markers linked to four major yield-component traits. Four promising F2:3 lines(ARS 563–14, ARS 563–62, ARS 563–286, and ARS 563–41)bearing combinations of desirable alleles were selected. A selected set of 20 F2:4 lines showed moderate to high heritability for all target traits. Fourteen F2:5 lines derived from ARS 563–14 and 17 F2:5 from ARS 563–286 families were evaluated in preliminary trials to estimate yield gain. The three top lines, ARS 563–286–16-1-1, ARS 563–286–5-1-1, and ARS563–14–10-1-1, showed an increase of more than 10% grain yield over the best check, Sahel108, which is widely cultivated in the Senegal River valley. The 16 markers linked to the target yield component traits can be used to fast-track breeding programs targeting rice productivity.展开更多
文摘Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species.
文摘Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".
基金funding to the GRiSP New Frontiers Project (DRPC2012-025)
文摘Increase grain yield potential is one of the most important objectives of any cereal crop breeding program. To efficiently develop superior rice lines by the introgression of favorable alleles for yield and yield component traits, a strategy of alternate phenotype–genotype selection was used. The present study aimed to(i) investigate the allelic diversity of loci associated with major yield-component traits and(ii) phenotype and genotype advanced populations derived from crosses between NERICA-L-20 and Giza178 for yield component traits using agro-morphological descriptors and GRi SP polymorphic markers to select superior high-yielding rice lines. A total of 100 F2:3 progeny were selected from 1000 F2 plants and genotyped with 16 polymorphic markers linked to four major yield-component traits. Four promising F2:3 lines(ARS 563–14, ARS 563–62, ARS 563–286, and ARS 563–41)bearing combinations of desirable alleles were selected. A selected set of 20 F2:4 lines showed moderate to high heritability for all target traits. Fourteen F2:5 lines derived from ARS 563–14 and 17 F2:5 from ARS 563–286 families were evaluated in preliminary trials to estimate yield gain. The three top lines, ARS 563–286–16-1-1, ARS 563–286–5-1-1, and ARS563–14–10-1-1, showed an increase of more than 10% grain yield over the best check, Sahel108, which is widely cultivated in the Senegal River valley. The 16 markers linked to the target yield component traits can be used to fast-track breeding programs targeting rice productivity.