Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging a...Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging as a critical concern in human health. Pregnancy and fetal development stages are highly susceptible to environmental exposure and tend to develop a long-term impact in later life. In this review, we briefly glance at the direct impact of outdoor and indoor air pollutants on lung diseases and pregnancy disorders. We further focus on lung complications in later life with early exposure to air pollutants. Epidemiological evidence is provided to show the association of prenatal or perinatal exposure to air pollutants with various adverse birth outcomes, such as preterm birth, lower birth weight, and lung developmental defects, which further associate with respiratory diseases and reduced lung function in children and adults. Mechanistic evidence is also discussed to support that air pollutants impact various cellular and molecular targets at early life, which link to the pathogenesis and altered immune responses related to abnormal respiratory functions and lung diseases in later life.展开更多
Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials.Stu...Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials.Studies of spin dynamics in the terahertz(THz)frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities.Here,we review THz phenomena related to spin dynamics in rare-earth orthoferrites,a class of materials promising for antiferromagnetic spintronics.We expand this topic into a description of four key elements.(1)We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium.While acoustic magnons are useful indicators of spin reorientation transitions,electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures.(2)We then review the strong laser driving scenario,where the system is excited far from equilibrium and thereby subject to modifications to the free-energy landscape.Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed.(3)Furthermore,we review a variety of protocols to manipulate coherent THz magnons in time and space,which are useful capabilities for antiferromagnetic spintronic applications.(4)Finally,new insights into the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided.By presenting a review on an array of THz spin phenomena occurring in a single class of materials,we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics,which will facilitate the invention of new protocols of active spin control and quantum phase engineering.展开更多
文摘Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging as a critical concern in human health. Pregnancy and fetal development stages are highly susceptible to environmental exposure and tend to develop a long-term impact in later life. In this review, we briefly glance at the direct impact of outdoor and indoor air pollutants on lung diseases and pregnancy disorders. We further focus on lung complications in later life with early exposure to air pollutants. Epidemiological evidence is provided to show the association of prenatal or perinatal exposure to air pollutants with various adverse birth outcomes, such as preterm birth, lower birth weight, and lung developmental defects, which further associate with respiratory diseases and reduced lung function in children and adults. Mechanistic evidence is also discussed to support that air pollutants impact various cellular and molecular targets at early life, which link to the pathogenesis and altered immune responses related to abnormal respiratory functions and lung diseases in later life.
基金X.L.acknowledges support from the Caltech Postdoctoral Prize Fellowship and the Institute for Quantum Information and Matter(IQIM).J.K.acknowledges support from the Robert A.Welch Foundation through Grant No.C-1509 and the U.S.Army Research Office through Grant No.W911NF-17-1-0259.
文摘Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials.Studies of spin dynamics in the terahertz(THz)frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities.Here,we review THz phenomena related to spin dynamics in rare-earth orthoferrites,a class of materials promising for antiferromagnetic spintronics.We expand this topic into a description of four key elements.(1)We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium.While acoustic magnons are useful indicators of spin reorientation transitions,electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures.(2)We then review the strong laser driving scenario,where the system is excited far from equilibrium and thereby subject to modifications to the free-energy landscape.Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed.(3)Furthermore,we review a variety of protocols to manipulate coherent THz magnons in time and space,which are useful capabilities for antiferromagnetic spintronic applications.(4)Finally,new insights into the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided.By presenting a review on an array of THz spin phenomena occurring in a single class of materials,we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics,which will facilitate the invention of new protocols of active spin control and quantum phase engineering.