Formulation of exact loading function for radial loading situation has been a major challenge in wheel modeling. Hence, approximate loading functions such as Cosine, Boussinesq, Eye-bar, Polynomial, Hertzian etc., hav...Formulation of exact loading function for radial loading situation has been a major challenge in wheel modeling. Hence, approximate loading functions such as Cosine, Boussinesq, Eye-bar, Polynomial, Hertzian etc., have been developed by different researchers. In this paper, analysis of different loading functions—Cosine (CLF), Boussinesq (BLF) and Eye-bar (ELF) at deferent inflation pressure of 0.3, 0.15 and 0 MPa at specified radial load of 4750N is carried out on a selected aluminium with ISO designation (6JX14H2;ET 42). The 3-D computer model of the wheel is generated and discretised into 3785 hexahedral elements and analysed with Creo Elements/Pro 5.0. Loading angle of 90 degree symmetric with the point of contact of the wheel with the ground is used for ELF, while 30 degrees contact angle is employed for both CLF and BLF. Von Mises stress is used as a basis for comparison of the different loading functions investigated with the experimental data obtained by Sherwood et al while the displacement values (as obtained from the FEM tool) are used as a basis for comparison of the different loading functions, as displacement is not covered by Sherwood et al. Results show that at 0.3MPa inflation pressure, the maximum stress value of CLF approaches the Sherwood value of about 14 MPa and that the CLF function values coincide with Sherwood values at three points along the curve, with values of about 13.8 MPa, 13 MPa and 6.4 MPa at about 0 degree, 15 degree and 20 degree respectively. The BLF value coincides with the Sherwood value at about 18 degree with a magnitude of about 10.6 MPa, while ELF equals the Sherwood value at magnitude of about 6.2 MPa at about 22 degree. At 0.15 and 0 MPa inflation pressure, values CLF, BLF and ELF deviate significantly from the Sherwood values (due to under inflation) with the maximum CLF stress value approaching a value of about 13 and 12MPa respectively. The CLF, BLF and the Sherwood values are the same at about 6 and 3 MPa at 0.15 and 0 MPa inflation pressure respectively. The displacement values for ELF are lesser than those of CLF and BLF for all range of values. The different loading functions values being equal the Sherwood values (used as refernce) at different points, with the CLF having more coincident points along the curve. Higher stress and displacement magnitudes are clustered between 0 degree and about 35 degree. Although, the CLF and BLF offer greater stress and displacement values than ELF, hence the type of loading function adapted for any analysis depends on the type of tyres to be fitted on the wheel. CLF and BLF offers greater prospect for non run flat tyres, while ELF is most suited for run flat tyres. In all cases the right inflation pressure as specified by the tyre manufacture should be employed in any analysis.展开更多
Energy and exergy analysis was conducted for a vegetable oil refinery in the Southwest of Nigeria. The plant, powered by two boilers and a 500 kVA generator, refines 100 tonnes of crude palm kernel oil (CPKO) into edi...Energy and exergy analysis was conducted for a vegetable oil refinery in the Southwest of Nigeria. The plant, powered by two boilers and a 500 kVA generator, refines 100 tonnes of crude palm kernel oil (CPKO) into edible vegetable oil per day. The production system consists of four main group operations: neutralizer, bleacher, filter, and deodourizer. The performance of the plant was evaluated by considering energy and exergy losses of each unit operation of the production process. The energy intensity for processing 100 tonnes of palm kennel oil into edible oil was estimated as 487.04 MJ/tonne with electrical energy accounting for 4.65%, thermal energy, 95.23% and manual energy, 0.12%. The most energy intensive group operation was the deodourizer accounting for 56.26% of the net energy input. The calculated exergy efficiency of the plant is 38.6% with a total exergy loss of 29919 MJ. Consequently, the exergy analysis revealed that the deodourizer is the most inefficient group operation accounting for 52.41% of the losses in the production processes. Furthermore, a critical look at the different component of the plant revealed that the boilers are the most inefficient units accounting for 69.7% of the overall losses. Other critical points of exergy losses of the plant were also identified. The increase in the total capacity of the plant was suggested in order to reduce the heating load of the boilers. Furthermore, the implementation of appropriate process heat integration can also help to improve the energy efficiency of the system. The suggestion may help the company to reduce its high expenditure on energy and thus improve the profit margin.展开更多
Corrosion of metal components constitutes a major challenge in many engineering systems, with appropriate design, proper material selection, and heat treatment as commonly used control strategies. In this study, the c...Corrosion of metal components constitutes a major challenge in many engineering systems, with appropriate design, proper material selection, and heat treatment as commonly used control strategies. In this study, the corrosion behaviour of heat-treated (annealed, normalised, hardened, and tempered) NST 37-2 steel in three concentrations (1.0, 1.5 and 2.0 M) of hydrochloric acid solution was investigated using weight loss and electrode-potential methods. Results showed that corrosion rate increased with increase in acid concentration. The decreasing order of corrosion resistance was Tempered > Annealed > Normalised > Hardened > Untreated. The surface pictures of the heat-treated and untreated samples showed uniform and pitting corrosion with the latter becoming more pronounced as concentration increased.展开更多
In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuri...In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuring axial strains in automobile wheel. The wheel used was a five-arm wheel (6JX14H2;ET 42) and Tyre (175 × 65 R 14). Experimental (EXP) test was carried out, with a radial load of 4750 N and inflation pressure of 0.3 MPa, to measure the axil strains which were converted to maximum principal strain values and, compared with data from Finite Element Analysis (FEA) using Creo-Element/Pro 5.0 at wheel’s contact angles of 90 degree (FEA 90 deg), 40 degree (FEA 40 deg) and 30.25 degree (FEA 30.25 deg), respectively. Results show that at the wheel’s point of contact with the ground, maximum principal strain values were highest at the inboard bead seat with a value of about 5.69 × 10<sup>-4</sup> mm/mm, followed by the values at the well of about 5.66 × 10<sup>-4</sup> mm/mm. The value at the outboard bead seat was least at about 2.22 × 10<sup>-4</sup> mm/mm, which was due to the presence of spikes at this location that tends to resist imposed radial loads. However, the highest mean maximum principal strain values at the locations of inboard, well and outboard, were about 2.11 × 10<sup>-4</sup> mm/mm, 3.78 × 10<sup>-4</sup> mm/mm and .99 × 10<sup>-4</sup> mm/mm, respectively. With the highest single value of about 5.69 × 10<sup>-4</sup> mm/mm, the inboard bead seat was the most strained location of the wheel. Overall results showed that all values of maximum principal strains were below the threshold value of about 1 × 10<sup>-2</sup> mm/mm. The values obtained for EXP and FEA could be said to be in close agreement when compared with the threshold value. With this in mind, the rig is recommended for use in related experimental procedures.展开更多
文摘Formulation of exact loading function for radial loading situation has been a major challenge in wheel modeling. Hence, approximate loading functions such as Cosine, Boussinesq, Eye-bar, Polynomial, Hertzian etc., have been developed by different researchers. In this paper, analysis of different loading functions—Cosine (CLF), Boussinesq (BLF) and Eye-bar (ELF) at deferent inflation pressure of 0.3, 0.15 and 0 MPa at specified radial load of 4750N is carried out on a selected aluminium with ISO designation (6JX14H2;ET 42). The 3-D computer model of the wheel is generated and discretised into 3785 hexahedral elements and analysed with Creo Elements/Pro 5.0. Loading angle of 90 degree symmetric with the point of contact of the wheel with the ground is used for ELF, while 30 degrees contact angle is employed for both CLF and BLF. Von Mises stress is used as a basis for comparison of the different loading functions investigated with the experimental data obtained by Sherwood et al while the displacement values (as obtained from the FEM tool) are used as a basis for comparison of the different loading functions, as displacement is not covered by Sherwood et al. Results show that at 0.3MPa inflation pressure, the maximum stress value of CLF approaches the Sherwood value of about 14 MPa and that the CLF function values coincide with Sherwood values at three points along the curve, with values of about 13.8 MPa, 13 MPa and 6.4 MPa at about 0 degree, 15 degree and 20 degree respectively. The BLF value coincides with the Sherwood value at about 18 degree with a magnitude of about 10.6 MPa, while ELF equals the Sherwood value at magnitude of about 6.2 MPa at about 22 degree. At 0.15 and 0 MPa inflation pressure, values CLF, BLF and ELF deviate significantly from the Sherwood values (due to under inflation) with the maximum CLF stress value approaching a value of about 13 and 12MPa respectively. The CLF, BLF and the Sherwood values are the same at about 6 and 3 MPa at 0.15 and 0 MPa inflation pressure respectively. The displacement values for ELF are lesser than those of CLF and BLF for all range of values. The different loading functions values being equal the Sherwood values (used as refernce) at different points, with the CLF having more coincident points along the curve. Higher stress and displacement magnitudes are clustered between 0 degree and about 35 degree. Although, the CLF and BLF offer greater stress and displacement values than ELF, hence the type of loading function adapted for any analysis depends on the type of tyres to be fitted on the wheel. CLF and BLF offers greater prospect for non run flat tyres, while ELF is most suited for run flat tyres. In all cases the right inflation pressure as specified by the tyre manufacture should be employed in any analysis.
文摘Energy and exergy analysis was conducted for a vegetable oil refinery in the Southwest of Nigeria. The plant, powered by two boilers and a 500 kVA generator, refines 100 tonnes of crude palm kernel oil (CPKO) into edible vegetable oil per day. The production system consists of four main group operations: neutralizer, bleacher, filter, and deodourizer. The performance of the plant was evaluated by considering energy and exergy losses of each unit operation of the production process. The energy intensity for processing 100 tonnes of palm kennel oil into edible oil was estimated as 487.04 MJ/tonne with electrical energy accounting for 4.65%, thermal energy, 95.23% and manual energy, 0.12%. The most energy intensive group operation was the deodourizer accounting for 56.26% of the net energy input. The calculated exergy efficiency of the plant is 38.6% with a total exergy loss of 29919 MJ. Consequently, the exergy analysis revealed that the deodourizer is the most inefficient group operation accounting for 52.41% of the losses in the production processes. Furthermore, a critical look at the different component of the plant revealed that the boilers are the most inefficient units accounting for 69.7% of the overall losses. Other critical points of exergy losses of the plant were also identified. The increase in the total capacity of the plant was suggested in order to reduce the heating load of the boilers. Furthermore, the implementation of appropriate process heat integration can also help to improve the energy efficiency of the system. The suggestion may help the company to reduce its high expenditure on energy and thus improve the profit margin.
文摘Corrosion of metal components constitutes a major challenge in many engineering systems, with appropriate design, proper material selection, and heat treatment as commonly used control strategies. In this study, the corrosion behaviour of heat-treated (annealed, normalised, hardened, and tempered) NST 37-2 steel in three concentrations (1.0, 1.5 and 2.0 M) of hydrochloric acid solution was investigated using weight loss and electrode-potential methods. Results showed that corrosion rate increased with increase in acid concentration. The decreasing order of corrosion resistance was Tempered > Annealed > Normalised > Hardened > Untreated. The surface pictures of the heat-treated and untreated samples showed uniform and pitting corrosion with the latter becoming more pronounced as concentration increased.
文摘In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuring axial strains in automobile wheel. The wheel used was a five-arm wheel (6JX14H2;ET 42) and Tyre (175 × 65 R 14). Experimental (EXP) test was carried out, with a radial load of 4750 N and inflation pressure of 0.3 MPa, to measure the axil strains which were converted to maximum principal strain values and, compared with data from Finite Element Analysis (FEA) using Creo-Element/Pro 5.0 at wheel’s contact angles of 90 degree (FEA 90 deg), 40 degree (FEA 40 deg) and 30.25 degree (FEA 30.25 deg), respectively. Results show that at the wheel’s point of contact with the ground, maximum principal strain values were highest at the inboard bead seat with a value of about 5.69 × 10<sup>-4</sup> mm/mm, followed by the values at the well of about 5.66 × 10<sup>-4</sup> mm/mm. The value at the outboard bead seat was least at about 2.22 × 10<sup>-4</sup> mm/mm, which was due to the presence of spikes at this location that tends to resist imposed radial loads. However, the highest mean maximum principal strain values at the locations of inboard, well and outboard, were about 2.11 × 10<sup>-4</sup> mm/mm, 3.78 × 10<sup>-4</sup> mm/mm and .99 × 10<sup>-4</sup> mm/mm, respectively. With the highest single value of about 5.69 × 10<sup>-4</sup> mm/mm, the inboard bead seat was the most strained location of the wheel. Overall results showed that all values of maximum principal strains were below the threshold value of about 1 × 10<sup>-2</sup> mm/mm. The values obtained for EXP and FEA could be said to be in close agreement when compared with the threshold value. With this in mind, the rig is recommended for use in related experimental procedures.