期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The influence of reflections from the train body and the ground on the sound radiation from a railway rail
1
作者 david j.thompson Dong Zhao +3 位作者 Evangelos Ntotsios Giacomo Squicciarini Ester Cierco Erwin Jansen 《Railway Sciences》 2024年第1期1-17,共17页
Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper ... Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements. 展开更多
关键词 Rolling noise Sound radiation Railway track Boundary elements Ground reflections DIRECTIVITY
下载PDF
FAST discovery of an extremely radio-faint millisecond pulsar from the Fermi-LAT unassociated source 3FGL J0318.1+0252
2
作者 Pei Wang Di Li +25 位作者 Colin J.Clark Pablo M.Saz Parkinson Xian Hou Weiwei Zhu Lei Qian Youling Yue Zhichen Pan Zhijie Liu Xuhong Yu Shanping You Xiaoyao Xie Qijun Zhi Hui Zhang Jumei Yao Jun Yan Chengmin Zhang Kwok Lung Fan Paul S.Ray Matthew Kerr david A.Smith Peter F.Michelson Elizabeth C.Ferrara david j.thompson Zhiqiang Shen Na Wang FAST&Fermi-LAT Collaboration 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第12期10-17,共8页
High sensitivity radio searches of unassociated γ-ray sources have proven to be an effective way of finding new pulsars. Using the Five-hundred-meter Aperture Spherical radio Telescope(FAST) during its commissioning ... High sensitivity radio searches of unassociated γ-ray sources have proven to be an effective way of finding new pulsars. Using the Five-hundred-meter Aperture Spherical radio Telescope(FAST) during its commissioning phase, we have carried out a number of targeted deep searches of Fermi Large Area Telescope(LAT) γ-ray sources. On February 27, 2018 we discovered an isolated millisecond pulsar(MSP), PSR J0318+0253, coincident with the unassociated γ-ray source 3 FGL J0318.1+0252. PSR J0318+0253 has a spin period of 5.19 ms, a dispersion measure(DM) of 26 pc cm-3 corresponding to a DM distance of about 1.3 kpc, and a period-averaged flux density of(~11±2) μJy at L-band(1.05-1.45 GHz). Among all high energy MSPs, PSR J0318+0253 is the faintest ever detected in radio bands, by a factor of at least ~4 in terms of L-band fluxes. With the aid of the radio ephemeris, an analysis of 9.6 years of Fermi-LAT data revealed that PSR J0318+0253 also displays strong γ-ray pulsations. Follow-up observations carried out by both Arecibo and FAST suggest a likely spectral turn-over around 350 MHz. This is the first result from the collaboration between FAST and the Fermi-LAT teams as well as the first confirmed new MSP discovery by FAST, raising hopes for the detection of many more MSPs. Such discoveries will make a significant contribution to our understanding of the neutron star zoo while potentially contributing to the future detection of gravitational waves, via pulsar timing array(PTA) experiments. 展开更多
关键词 FAST pulsar radio gamma rays
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部