Jute fiber (woven fabric, 1 × 1 plain weave) reinforced polypropylene matrix composites were prepared by compression molding with various fiber loading such as 30%, 40%, 46%, 50%, 55% by weight. The mechanical pr...Jute fiber (woven fabric, 1 × 1 plain weave) reinforced polypropylene matrix composites were prepared by compression molding with various fiber loading such as 30%, 40%, 46%, 50%, 55% by weight. The mechanical properties such as tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM) and impact strength (IS) of the composite were assessed and analyzed. The highest value of TS, BS, TM, BM and IS were 68.1 MPa, 94.1 MPa, 2936 MPa, 4831 MPa and 14.5 kJ/m2 respectively with 50% fiber loading by weight. It was found that the mechanical properties of the composites were increased with the increase in jute fiber content up to 50% by weight;however, further increase in fiber loading the value decreased. On the basis of fiber content, 50% fiber reinforced composites had the optimum set of mechanical properties. Initially the water absorption rate was higher and then it became slower and static with time. Chemical ageing test with various chemical media such as H2O2, NaOH, HCl and NaCl were performed up to 168 hours. After first 24 hours the composite samples showed gradual weight gain (%) and then the weight gain was become slow and steady in the chemical solution.展开更多
The effect of alkali concentrations has been studied on the color strength (K/S) and color fastness properties of single jersey cotton knitted fabrics dyed with 1% Novacron Red S-B reactive dye. Same bath scouring a...The effect of alkali concentrations has been studied on the color strength (K/S) and color fastness properties of single jersey cotton knitted fabrics dyed with 1% Novacron Red S-B reactive dye. Same bath scouring and bleaching are performed and conventional exhaust dyeing method employed by IR laboratory sample dyeing machine. Various alkali concentrations such as 6, 7, 8, 9 and 10 g/L are employed and other parameters are kept fixed. The color strength (K/S) and color fastness to wash and rubbing are examined and evaluated. It is revealed that with the increase in alkali concentration from 6 g/L to 8 g/L the value of K/S increases and then up to 10 g/L the value decreases. The overall color fastness properties to washing and rubbing for the dyed samples range from good to excellent.展开更多
Exploration on hydrogel fibres concerning about smart based application in the medical sector has stimulated great interests for the last couple of years due to its wide range of purposes that include actuators, artif...Exploration on hydrogel fibres concerning about smart based application in the medical sector has stimulated great interests for the last couple of years due to its wide range of purposes that include actuators, artificial adhesives, transplantable tissue organs, cell scaffolds, cell therapeutics, wound healing, cartilage or bone regeneration. Nevertheless, recently hydrogel fibre based biomaterials have drawn great concentration for use in a wide variety of biomedical applications like the sustained release of drugs. This is due to the fact that, hydrogel fibers are biocompatible and their similarity about physical properties is in relation with natural tissue. This review article prescribes about the application of hydrogels with diversified prospects in tissue engineering, wound care dressings, soft tissue recovery and plastic surgery. As the products of hydrogels are composed with a group of polymeric materials, the hydrophilic network structure makes them competent for holding an immense quantity of water in their three-dimensional polymer network structure. A wide-ranging application of these products in modern industrial and environmental areas has already taken into account to be of prime importance. Inevitably, natural hydrogels right is now gradually replaced by synthetic types due to their larger amount of water absorption capacity, durability alongside with wide ranges of raw chemical resources.展开更多
文摘Jute fiber (woven fabric, 1 × 1 plain weave) reinforced polypropylene matrix composites were prepared by compression molding with various fiber loading such as 30%, 40%, 46%, 50%, 55% by weight. The mechanical properties such as tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM) and impact strength (IS) of the composite were assessed and analyzed. The highest value of TS, BS, TM, BM and IS were 68.1 MPa, 94.1 MPa, 2936 MPa, 4831 MPa and 14.5 kJ/m2 respectively with 50% fiber loading by weight. It was found that the mechanical properties of the composites were increased with the increase in jute fiber content up to 50% by weight;however, further increase in fiber loading the value decreased. On the basis of fiber content, 50% fiber reinforced composites had the optimum set of mechanical properties. Initially the water absorption rate was higher and then it became slower and static with time. Chemical ageing test with various chemical media such as H2O2, NaOH, HCl and NaCl were performed up to 168 hours. After first 24 hours the composite samples showed gradual weight gain (%) and then the weight gain was become slow and steady in the chemical solution.
文摘The effect of alkali concentrations has been studied on the color strength (K/S) and color fastness properties of single jersey cotton knitted fabrics dyed with 1% Novacron Red S-B reactive dye. Same bath scouring and bleaching are performed and conventional exhaust dyeing method employed by IR laboratory sample dyeing machine. Various alkali concentrations such as 6, 7, 8, 9 and 10 g/L are employed and other parameters are kept fixed. The color strength (K/S) and color fastness to wash and rubbing are examined and evaluated. It is revealed that with the increase in alkali concentration from 6 g/L to 8 g/L the value of K/S increases and then up to 10 g/L the value decreases. The overall color fastness properties to washing and rubbing for the dyed samples range from good to excellent.
文摘Exploration on hydrogel fibres concerning about smart based application in the medical sector has stimulated great interests for the last couple of years due to its wide range of purposes that include actuators, artificial adhesives, transplantable tissue organs, cell scaffolds, cell therapeutics, wound healing, cartilage or bone regeneration. Nevertheless, recently hydrogel fibre based biomaterials have drawn great concentration for use in a wide variety of biomedical applications like the sustained release of drugs. This is due to the fact that, hydrogel fibers are biocompatible and their similarity about physical properties is in relation with natural tissue. This review article prescribes about the application of hydrogels with diversified prospects in tissue engineering, wound care dressings, soft tissue recovery and plastic surgery. As the products of hydrogels are composed with a group of polymeric materials, the hydrophilic network structure makes them competent for holding an immense quantity of water in their three-dimensional polymer network structure. A wide-ranging application of these products in modern industrial and environmental areas has already taken into account to be of prime importance. Inevitably, natural hydrogels right is now gradually replaced by synthetic types due to their larger amount of water absorption capacity, durability alongside with wide ranges of raw chemical resources.