期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analytical solutions for the restraint effect of isolation piles against tunneling-induced vertical ground displacements
1
作者 Liqiang Cao Xiangsheng Chen +3 位作者 Xing-Tao Lin Dong Su Huangcheng Fang dechun lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2582-2596,共15页
This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of t... This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of the pile‒soil interface but also the pile rowesoil interaction.The proposed method is verified by comparisons with existing theoretical methods,including the boundary element method and the elastic foundation method.The results reveal the restraining mechanism of the isolation piles on vertical ground displacements due to tunneling,i.e.the positive and negative restraint effects exerted by the isolation piles jointly drive the ground vertical displacement along the depth direction from the original tunneling-induced nonlinear variation situation to a relatively uniform situation.The results also indicate that the stiffness of the pile‒soil interface,including the pile shaft‒surrounding soil interface and pile tip-supporting soil interface,describes the strength of the pile‒soil interaction.The pile rows can confine the vertical ground displacement caused by the tunnel excavation to the inner side of the isolation piles and effectively prevent the vertical ground displacement from expanding further toward the outer side of the isolation piles. 展开更多
关键词 Restraining mechanism Restraint effect Isolation piles Ground displacement TUNNELING
下载PDF
Constitutive modelling of fabric effect on sand liquefaction 被引量:3
2
作者 Zhiwei Gao dechun lu +1 位作者 Yue Hou Xin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期926-936,共11页
Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fa... Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance. 展开更多
关键词 SAND ANISOTROPY LIQUEFACTION Finite element modelling Constitutive model
下载PDF
Fractional viscoelastic solution of stratum displacement of a shallow tunnel under the surface slope condition
3
作者 Fanchao Kong dechun lu +3 位作者 Chao Ma Chenpeng Shen Xiaodong Yang Xiuli Du 《Underground Space》 SCIE EI CSCD 2023年第3期233-247,共15页
The unified displacement function(UDF)is presented to describe the deformation behaviours of the tunnel profile along with time under the surface slope condition.Based on the discrete Fourier method,the third-order UD... The unified displacement function(UDF)is presented to describe the deformation behaviours of the tunnel profile along with time under the surface slope condition.Based on the discrete Fourier method,the third-order UDF in the physical plane is expanded to the Laurent series in the complex variable plane.The complex variable method is employed to derive the elastic analytical solution of stra-tum displacement,when the third-order UDF is taken as the displacement boundary condition of tunnel cross-section(DBCTC).The proposed elastic solution agrees well with the results of the finite element method for the consistent model,which verifies the correctness of the proposed analytical solution.Combining the corresponding principle and fractional Generalized Kelvin viscoelastic constitutive model,the fractional viscoelastic solution under the surface slope condition is determined.The time effect of stratum displacement is presented in two aspects:time-dependent DBCTC and time-dependent material parameters.The parameter analysis is performed to investigate influences of deformation modes of the third-order UDF,slope angle,tunnel radius and fractional order on the time effect of stratum vertical and horizontal displacement. 展开更多
关键词 Third-order unified displacement function Surface slope condition Fractional viscoelastic solution Complex variable method Discrete Fourier method
原文传递
New framework of low-carbon city development of China:Underground space based integrated energy systems 被引量:1
4
作者 Boyu Qin Hengyi Li +4 位作者 Zhaojian Wang Yuan Jiang dechun lu Xiuli Du Qihu Qian 《Underground Space》 SCIE EI CSCD 2024年第1期300-318,共19页
Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with ... Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with the increasingly serious climate change problems,and low-carbon technologies have attracted extensive attention.However,the potential of such technologies to reduce carbon emissions is constrained by various factors,such as space,operational environment,and safety concerns.As an essential territorial natural resource,underground space can provide large-scale and stable space support for existing low-carbon technologies.Integrating underground space and low-carbon technologies could be a promising approach towards carbon neutrality,and hence,warrants further exploration.First,a comprehensive review of the existing low-carbon technologies including the technical bottlenecks is presented.Second,the features of underground space and its low carbon potential are summarized.Moreover,a framework for the underground space based integrated energy system is proposed,including system configuration,operational mechanisms,and the resulting benefits.Finally,the research prospect and key challenges required to be settled are highlighted. 展开更多
关键词 Underground space Low-carbon city Integrated energy system Carbon neutrality
原文传递
Theoretical prediction of ground settlements due to shield tunneling in multi-layered soils considering process parameters
5
作者 Liqiang Cao Xiangsheng Chen +2 位作者 dechun lu Dingli Zhang Dong Su 《Underground Space》 SCIE EI CSCD 2024年第3期29-43,共15页
This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the gene... This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the general form of the Mindlin’s solution and Loganathan-Poulos formula can comprehensively consider the in-process tunneling parameters including:unbalanced face pressure,shield-soil friction,unbalanced tail grouting pressure,unbalanced secondary grouting pressure,overloading during tunneling and the ground volume loss.The method is verified by comparing with the field data from the Qinghuayuan Tunnel Project in terms of the ground surface settlements along the longitudinal and transverse direction.Due to the local settlement or heave caused by the certain tunneling parameters,the ground surface settlements calculated using current solution along the longitudinal direction presents an irregular S-shaped curve instead of the traditional S-shaped curve.Results also find that the effect of the unbalanced secondary grouting pressure and the overloading during tunneling cannot be ignored. 展开更多
关键词 TUNNELING SHIELD Ground settlements Theoretical analysis Urban areas Multi-layered soils Qinghuayuan Tunnel
原文传递
A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix and domain reduction methods
6
作者 Yusheng YANG Haitao YU +2 位作者 Yong YUAN dechun lu Qiangbing HUANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第1期10-24,共15页
A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves.The free-field responses are first obtained using the stiffness matrix method based on ... A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves.The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions.Then,the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system.The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground,layered ground,and pressure-dependent heterogeneous ground,as well as for an example of a soil–structure interaction simulation.Compared with the viscous and viscous-spring boundary methods adopted in previous studies,the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground.Numerical results show that SV-waves are more destructive to underground structures than P-waves,and the responses of underground structures are significantly affected by the incident angles. 展开更多
关键词 underground structures seismic response stiffness matrix method domain reduction method P-SV waves
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部