The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distr...The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.展开更多
Pore water pressure fluctuations are an inherent phenomenon during the consolidation process of clayey foundations, and understanding its mechanism is crucial for comprehending the consolidation process and addressing...Pore water pressure fluctuations are an inherent phenomenon during the consolidation process of clayey foundations, and understanding its mechanism is crucial for comprehending the consolidation process and addressing issues such as drainage blockage during consolidation. This study investigates the consolidation behavior of clay, particularly focusing on pore water pressure fluctuations during the consolidation process of dredged marine sedimentary mud from Daya Bay, Guangdong Province. Given the prevalent use of clay in large-scale construction projects in southern China, understanding the factors influencing pore water pressure is crucial for optimizing consolidation times and improving construction efficacy. Using a custom vacuum preloading model, the research explores the impact of sodium hydroxide on the bound water content and its subsequent effects on pore water pressure dynamics. Experimental findings reveal a distinct inflection point in pore water pressure dissipation, suggesting that particle migration and bound water interactions contribute to the observed fluctuations. These results provide valuable insights for enhancing engineering applications in clay consolidation and mitigating drainage issues, ultimately informing construction practices and reducing project timelines.展开更多
文摘The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.
文摘Pore water pressure fluctuations are an inherent phenomenon during the consolidation process of clayey foundations, and understanding its mechanism is crucial for comprehending the consolidation process and addressing issues such as drainage blockage during consolidation. This study investigates the consolidation behavior of clay, particularly focusing on pore water pressure fluctuations during the consolidation process of dredged marine sedimentary mud from Daya Bay, Guangdong Province. Given the prevalent use of clay in large-scale construction projects in southern China, understanding the factors influencing pore water pressure is crucial for optimizing consolidation times and improving construction efficacy. Using a custom vacuum preloading model, the research explores the impact of sodium hydroxide on the bound water content and its subsequent effects on pore water pressure dynamics. Experimental findings reveal a distinct inflection point in pore water pressure dissipation, suggesting that particle migration and bound water interactions contribute to the observed fluctuations. These results provide valuable insights for enhancing engineering applications in clay consolidation and mitigating drainage issues, ultimately informing construction practices and reducing project timelines.