Chains are typically used for tension load transfer. They are very flexible and allow easy length adjustment by hooking at the links. Steel is the traditional material for chains. Recently, synthetic link chains made ...Chains are typically used for tension load transfer. They are very flexible and allow easy length adjustment by hooking at the links. Steel is the traditional material for chains. Recently, synthetic link chains made from ultra-strong polyethylene fibers, branded as Dyneema®, are commercially available. These chains offer a highly improved strength to weight ratio. So far, one type of such chains is available, and it has a Working Load Limit of 100 kN. 50 of such chains, containing 6 links were tested to fracture. The strength of each chain and the location of the failed link were documented during testing for later interpretation. Weibull statistics was applied in order to extrapolate towards the allowable load for very low failure risks (high reliability). Two approaches were used. One extrapolation was based on all results;the other was applied after recognition that the end links failed under a slight negative influence by the connection to the testing equipment. Thus, in fact two populations are mixed, the chains with failing end links and the chains with failing central links. So considering the population without the failing end links is more representative for pure chain behavior without clamping effects. The results from this latter consideration showed a higher Weibull exponent, thus a more realistic extrapolation behavior. Both methods indicate that the reliability at the working load limit of 100 kN is very good.展开更多
Temporary high water floods may cause considerable damage. Protection against such flooding may be achieved with high dikes or walls. However, such rigid permanent structures may spoil the local architectures and view...Temporary high water floods may cause considerable damage. Protection against such flooding may be achieved with high dikes or walls. However, such rigid permanent structures may spoil the local architectures and views and may be quite expensive. Temporary collapsible structures do not have such disadvantages. This paper proposes such a temporary structure, consisting of a strong membrane made out of strong UHMWPE fibers (Dyneema?), a floating body and mooring cables. A two dimensional calculation scheme is presented and the calculation results are used for design considerations regarding the approximation of optimal configurations.展开更多
文摘Chains are typically used for tension load transfer. They are very flexible and allow easy length adjustment by hooking at the links. Steel is the traditional material for chains. Recently, synthetic link chains made from ultra-strong polyethylene fibers, branded as Dyneema®, are commercially available. These chains offer a highly improved strength to weight ratio. So far, one type of such chains is available, and it has a Working Load Limit of 100 kN. 50 of such chains, containing 6 links were tested to fracture. The strength of each chain and the location of the failed link were documented during testing for later interpretation. Weibull statistics was applied in order to extrapolate towards the allowable load for very low failure risks (high reliability). Two approaches were used. One extrapolation was based on all results;the other was applied after recognition that the end links failed under a slight negative influence by the connection to the testing equipment. Thus, in fact two populations are mixed, the chains with failing end links and the chains with failing central links. So considering the population without the failing end links is more representative for pure chain behavior without clamping effects. The results from this latter consideration showed a higher Weibull exponent, thus a more realistic extrapolation behavior. Both methods indicate that the reliability at the working load limit of 100 kN is very good.
文摘Temporary high water floods may cause considerable damage. Protection against such flooding may be achieved with high dikes or walls. However, such rigid permanent structures may spoil the local architectures and views and may be quite expensive. Temporary collapsible structures do not have such disadvantages. This paper proposes such a temporary structure, consisting of a strong membrane made out of strong UHMWPE fibers (Dyneema?), a floating body and mooring cables. A two dimensional calculation scheme is presented and the calculation results are used for design considerations regarding the approximation of optimal configurations.