Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination lim...Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.展开更多
Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configuration...Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials.展开更多
Sodium-ion batteries are promising candidates for large-scale grid storage systems and other applications.Their foremost advantage derives from superior environmental credentials,enhanced safety as well as lower raw m...Sodium-ion batteries are promising candidates for large-scale grid storage systems and other applications.Their foremost advantage derives from superior environmental credentials,enhanced safety as well as lower raw material costs than lithium-ion batteries.It is still challenging to explore desirable anode material.In this study,FeSe_(2)@CoSe_(2)/FeSe_(2),with a yolk-shell structure was prepared by ion exchange and selenisation.The FeSe_(2)@CoSe_(2)/FeSe_(2)prepared as anode material for sodiumion batteries exhibits excellent rate capability due to the synergistic effect of bimetallic selenides and the interfacial effect of the heterostructure.Moreover,it delivers high performance(510 mAh g^(-1)at 0.2 A g^(-1)),superior rate capa-bility(90%retention at 5 A g^(-1)),and good long-time cycling stability(78%capacity retention after 1800 cycles at a high current density of 2 A g^(-1)).The optimized sodiumion full cell with FeSe_(2)@CoSe_(2)/FeSe_(2)as the anode and Na 3 V 2(PO 4)3 as the cathode still demonstrates excellent performance.Namely,a ca-pacity of 272 mAh g^(-1)(at 1 A g^(-1))within the operating voltage from 1 to 3.8 V can be obtained.This work illustrates the potential of bimetallic selenides with heterostructures for performance enhancement of sodium-ion batteries.展开更多
Converting hydrocarbons into aldehydes in a green and environmentally benign way is of great signif-icance in fine chemistry.In this work,all-inorganic Cs_(3)Bi_(2)B_(9) perovskite nanoparticles were uniformly loaded ...Converting hydrocarbons into aldehydes in a green and environmentally benign way is of great signif-icance in fine chemistry.In this work,all-inorganic Cs_(3)Bi_(2)B_(9) perovskite nanoparticles were uniformly loaded on BiOBr nanosheets via an in-situ growth method,which can selectivity photoactivate aromatic C(sp3)-H bond of toluene to generate benzaldehyde.According to the in-situ X-ray photoelectron spec-troscopy characterization,the photogenerated electrons of BiOBr transfer to Cs_(3)Bi_(2)B_(9) enforced by the in-ternal electric field under light irradiation,resulting in S-scheme heterojunction.Furthermore,theoretical calculations indicate that toluene molecules are inclined to adsorb on the BiOBr surface,subsequently in-volving the oxidation reaction to generate benzyl radical(PhCH_(2)·)by using the energetic holes of BiOBr,while the remaining photoinduced electrons in the conduction band(CB)of Cs_(3)Bi_(2)B_(9) with powerful reduction ability reduce O2 into·O_(2)^(-),which is the vital oxidative active species working on toluene selective oxidation process.Such an unexceptionable charge carrier utilization mode and tendentious ad-sorption behavior of reactants contribute to the optimized Cs_(3)Bi_(2)B_(9)/BiOBr heterojunction with excellent photocatalytic performance,achieving a maximum of 22.5%toluene conversion and 96.2%selectivity to-wards benzaldehyde formation.This work provides a rational photocatalyst heterojunction construction protocol for the selective oxidation of saturated aromatic C-H bonds.展开更多
Although Bi_(7)O_(9)I_(3) is an oxygen-rich bismuth oxyiodide with higher photocatalytic activity than BiOI,its applicability for photocatalytic oxidation is limited by the rapid recombination of photogenerated carrie...Although Bi_(7)O_(9)I_(3) is an oxygen-rich bismuth oxyiodide with higher photocatalytic activity than BiOI,its applicability for photocatalytic oxidation is limited by the rapid recombination of photogenerated carriers and poor reusability.Depositing Bi_(7)O_(9)I_(3) on flexible macro-sized carbonaceous materials is a promising approach for promoting photogenerated electron migration and improving reusability.In this study,a composite consisting of Bi_(7)O_(9)I_(3) supported on graphitic carbon paper(Bi_(7)O_(9)I_(3)-CP)was synthesized via the in situ transformation of a BiOl-deposited carbon paper precursor(BiOl-CP).The as-prepared Bi_(7)O_(9)I_(3)-CP exhibited higher visible-light-driven photocatalytic activity than both Bi_(7)O_(9)I_(3) and BiOI-CP precursor for phenol removal.The improved photocatalytic activity of Bi_(7)O_(9)I_(3)-CP was attributed to its hierarchical structure and promoted carrier separation,as revealed by photoluminescence,pore structure,and reactive radical analyses.Moreover,owing to its macroscale size and flexibility,the Bi_(7)O_(9)I_(3)-CP composite could be easily operated and reused,which are favorable for practical applications.展开更多
The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an...The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production.The light absorption capacity,electron-hole separation efficiency and H_(2)-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon(NC)layer and the S-scheme heterojunction.Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions.Moreover,the NC layer could simultaneously reduce the photocorrosion of Cu_(2)O and promote the electron transfer.Experimental results demonstrate that the CTF-7%Cu_(2)O@NC composite shows outstanding hydrogen-production performance under visible light,achieving 15645μmol∙g^(−1)∙h^(−1),significantly surpassing the photocatalytic activity of pure CTF(2673μmol∙g^(−1)∙h^(−1)).This study introduces a novel approach to the development of efficient and innovative photocatalytic materials,strongly supporting the advancement of sustainable hydrogen energy.展开更多
In this study,a hierarchical Bi2O3/TiO2 fibrous composite was in-situ fabricated on an electrospun TiO2 nanofiber at ambient temperature.In the Bi2O3/TiO2 composite,S-scheme electron migration occurred between Bi2O3 a...In this study,a hierarchical Bi2O3/TiO2 fibrous composite was in-situ fabricated on an electrospun TiO2 nanofiber at ambient temperature.In the Bi2O3/TiO2 composite,S-scheme electron migration occurred between Bi2O3 and TiO2.In the photocatalytic degradation of phenol under simulated sunlight,the asprepared Bi2O3/TiO2 nanofibers considerably outperformed Bi2O3 nanoparticles and TiO2 nanofibers.This improvement is contributed by maintaining and effectively utilizing the useful carriers and consuming the useless holes and electrons,realized by the S-scheme heterojunction and hierarchical structure.This study also provides an alternative design fashion for photocatalysts.展开更多
As an industrial benign oxidant and alternative clean energy carrier for fuel cells,hydrogen peroxide(H_(2)O_(2))becomes the fo-cus of numerous studies.Photocatalytic H_(2)O_(2) synthesis becomes a sustainable protoco...As an industrial benign oxidant and alternative clean energy carrier for fuel cells,hydrogen peroxide(H_(2)O_(2))becomes the fo-cus of numerous studies.Photocatalytic H_(2)O_(2) synthesis becomes a sustainable protocol[1,2].However,traditional biphase systems suffer from the agglomeration and recycling difficulty of suspended photocatalysts,as well as sluggish delivery of gas reactants,which induces severe charge recombination and slow reaction kinetics[3].展开更多
BiOCl as a representative layered bismuth-based photocatalyst with Sillén-structure has aroused wide public concern on photocatalytic degradation.However,the photocatalytic efficiency of pristine BiOCl is current...BiOCl as a representative layered bismuth-based photocatalyst with Sillén-structure has aroused wide public concern on photocatalytic degradation.However,the photocatalytic efficiency of pristine BiOCl is currently restricted by its low optical absorption and charge separation efficiency.Herein,step-scheme(S-scheme)heterojunctions of In_(2)O_(3) nanoparticle and BiOCl micron-sheet were constructed by a convenient molten salt method by using a LiNO_(3)-KNO_(3) system.The In_(2)O_(3)-BiOCl heterojunctions exhibit higher optical absorption performance from 380 nm to 700 nm than the pristine BiOCl and enhanced photocatalytic property toward ciprofloxacin(CIP)degradation under Xenon lamp illumination.The sample 20%In_(2)O_(3) -BiOCl showed the highest photodegradation efficiency,attaining 91%removal of CIP within 35 min,which was 39.6 times and 3.2 times higher than that of pristine In_(2)O_(3) and BiOCl,respectively.The improved photodegradation property mainly resulted from the novel S-scheme mechanism,which boosted highly efficient separation of the photo-induced carriers.The photoluminescence spectrometric test and transient photocurrent response results demonstrated that In_(2)O_(3)-BiOCl composite exhibited efficient separation of photo-generated charge carriers.This work would provide new insights into the design of novel S-scheme photocatalytic systems with applicability in photocatalytic water treatment.展开更多
The conversion of solar energy in a wide spectrum region to clean fuel,H_(2),remains a challenge in the field of photocatalysis.Herein,plasmonic TiN nanobelts,as a novel cocatalyst,were coupled with CdS nanoparticles ...The conversion of solar energy in a wide spectrum region to clean fuel,H_(2),remains a challenge in the field of photocatalysis.Herein,plasmonic TiN nanobelts,as a novel cocatalyst,were coupled with CdS nanoparticles to construct a 0D/1D CdS/TiN heterojunction.Utilization of the localized surface plasmon resonance(LSPR)effect generated from TiN nanobelts was effective in promoting light absorption in the near-infrared region,accelerating charge separation,and generating hot electrons,which can effectively improve the photocatalytic H_(2) generation activity of the 0D/1D CdS/TiN heterojunction over a wide spectral range.Furthermore,owing to the high metallicity and low work function,an ohmic-junction was formed between the CdS and TiN,favoring the transfer of hot electrons generated from TiN nanobelts the CdS nanoparticles,followed by the reaction with water to generate H_(2).Consequently,the 0D/1D CdS/TiN heterojunction demonstrated H_(2) generation activity even under light irradiation at 760 nm,while the pure CdS and Pt nanoparticles modified CdS presented no activity.This work opens a new insight into coupling plasmonic cocatalysts to realize full spectrum H_(2) production.展开更多
Photocatalytic hydrogen evolution through water splitting holds tremendous promise for converting solar energy into a clean and renewable fuel source.However,the efficiency of photocatalysis is often hindered by poor ...Photocatalytic hydrogen evolution through water splitting holds tremendous promise for converting solar energy into a clean and renewable fuel source.However,the efficiency of photocatalysis is often hindered by poor light absorption,insufficient charge separation,and slow reaction kinetics of the photocatalysts.In this study,we designed and synthesized a novel S-scheme heterojunction comprising Ti_(3)C_(2)MXene,CdS nanorods,and nitrogen-doped carbon coated Cu_(2)O(Cu_(2)O@NC)core-shell nanoparticles.Ti_(3)C_(2)MXene as a cocatalyst enhances the light absorption and charge transfer of CdS nanorods.Simultaneously,the core-shell Cu_(2)O@NC nanoparticles establish a pathway for transferring photogenerated electrons and create a favorable band alignment for efficient hydrogen evolution.The synergistic effects of Ti_(3)C_(2)MXene and Cu_(2)O@NC on CdS nanorods result in multiple charge transfer channels and improved photocatalytic performance.The optimal hydrogen evolution rate of the Ti_(3)C_(2)-CdS-Cu_(2)O@NC S-scheme heterojunction photocatalyst is 7.4 times higher than that of pure CdS.Experimental techniques and DFT calculations were employed to explore the structure,morphology,optical properties,charge dynamics,and band structure of the heterojunction.The results revealed that the S-scheme mechanism effectively suppresses the recombination of photogenerated carriers and facilitates the separation and migration of photo-generated electrons and holes to the reaction sites.Furthermore,Ti_(3)C_(2)MXene provides abundant active sites essential for accelerating the surface H_(2)-evolution reaction kinetics.The Cu_(2)O@NC core-shell nanoparticles with a large surface area and high stability are closely adhered to CdS nanorods and establish an S-scheme internal electric field with CdS nanorods to drive charge separation.This investigation provides valuable insights into the rational design of CdS-based photocatalysts,enabling efficient hydrogen production by harnessing the robust kinetic driving force provided by the S-scheme heterojunctions.展开更多
Constructing noble-metal-free loaded catalyst with high-efficiency photocatalytic activity by a simple and scalable method is of profound significance for fundamental research and practical application.Herein,a simple...Constructing noble-metal-free loaded catalyst with high-efficiency photocatalytic activity by a simple and scalable method is of profound significance for fundamental research and practical application.Herein,a simple one-pot method was used to synthesize novel samples of array-like sulfur-doped graphitic carbon nitride(SCN)nanosheets with ultrathin MoS2 loading(MS/SCN-x%).The ultrathin MoS2 cocatalyst was evenly distributed on the surface of SCN and was linked to the main catalyst by covalent chemical bonds.Benefited from the multiple advantages of the array-like porous nanosheets structure with rich exposed surface,covalent cross-linking structure,and enhanced visible light absorption,the MS/SCN-2.5%composites drastically improve hydrogen evolution performance,which is superior to original MoS2 nanosheet modified by two-step mixing method,and also rivals with Pt/SCN.The designing strategy of photocatalyst modified by noble-metal-free cocatalyst with covalent bond structure provides fascinating insights into enhanced photocatalytic hydrogen evolution.展开更多
文摘Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.
基金supported by the National Natural Science Foundation of China (21802007)the Natural Science Foundation of Hunan Province (2020JJ5615)+1 种基金the Scientific Research Project of Hunan Provincial Department of Education (20B066)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-202001), Fuzhou University。
文摘Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials.
基金supported by the National Natural Science Foundation of China(Nos.21801200 and 22075217)the Open Project of Hunan Key Laboratory of Applied Environmental Photocatalysis(No.2114504)the Natural Science Foundation of Hubei Province of China(No.2022CFA001).
文摘Sodium-ion batteries are promising candidates for large-scale grid storage systems and other applications.Their foremost advantage derives from superior environmental credentials,enhanced safety as well as lower raw material costs than lithium-ion batteries.It is still challenging to explore desirable anode material.In this study,FeSe_(2)@CoSe_(2)/FeSe_(2),with a yolk-shell structure was prepared by ion exchange and selenisation.The FeSe_(2)@CoSe_(2)/FeSe_(2)prepared as anode material for sodiumion batteries exhibits excellent rate capability due to the synergistic effect of bimetallic selenides and the interfacial effect of the heterostructure.Moreover,it delivers high performance(510 mAh g^(-1)at 0.2 A g^(-1)),superior rate capa-bility(90%retention at 5 A g^(-1)),and good long-time cycling stability(78%capacity retention after 1800 cycles at a high current density of 2 A g^(-1)).The optimized sodiumion full cell with FeSe_(2)@CoSe_(2)/FeSe_(2)as the anode and Na 3 V 2(PO 4)3 as the cathode still demonstrates excellent performance.Namely,a ca-pacity of 272 mAh g^(-1)(at 1 A g^(-1))within the operating voltage from 1 to 3.8 V can be obtained.This work illustrates the potential of bimetallic selenides with heterostructures for performance enhancement of sodium-ion batteries.
基金National Natural Science Foundation of China(Nos.21905209,52171145,and 51973078)Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2020D01B25).
文摘Converting hydrocarbons into aldehydes in a green and environmentally benign way is of great signif-icance in fine chemistry.In this work,all-inorganic Cs_(3)Bi_(2)B_(9) perovskite nanoparticles were uniformly loaded on BiOBr nanosheets via an in-situ growth method,which can selectivity photoactivate aromatic C(sp3)-H bond of toluene to generate benzaldehyde.According to the in-situ X-ray photoelectron spec-troscopy characterization,the photogenerated electrons of BiOBr transfer to Cs_(3)Bi_(2)B_(9) enforced by the in-ternal electric field under light irradiation,resulting in S-scheme heterojunction.Furthermore,theoretical calculations indicate that toluene molecules are inclined to adsorb on the BiOBr surface,subsequently in-volving the oxidation reaction to generate benzyl radical(PhCH_(2)·)by using the energetic holes of BiOBr,while the remaining photoinduced electrons in the conduction band(CB)of Cs_(3)Bi_(2)B_(9) with powerful reduction ability reduce O2 into·O_(2)^(-),which is the vital oxidative active species working on toluene selective oxidation process.Such an unexceptionable charge carrier utilization mode and tendentious ad-sorption behavior of reactants contribute to the optimized Cs_(3)Bi_(2)B_(9)/BiOBr heterojunction with excellent photocatalytic performance,achieving a maximum of 22.5%toluene conversion and 96.2%selectivity to-wards benzaldehyde formation.This work provides a rational photocatalyst heterojunction construction protocol for the selective oxidation of saturated aromatic C-H bonds.
基金National Natural Science Foundation of China(Nos.52073034,21871030)Natural Science Foundation of Hunan Province of China(No.2018JJ2457)Scientific Research Foundation of Hunan Provincial Education Department of China(No.18A370).
文摘Although Bi_(7)O_(9)I_(3) is an oxygen-rich bismuth oxyiodide with higher photocatalytic activity than BiOI,its applicability for photocatalytic oxidation is limited by the rapid recombination of photogenerated carriers and poor reusability.Depositing Bi_(7)O_(9)I_(3) on flexible macro-sized carbonaceous materials is a promising approach for promoting photogenerated electron migration and improving reusability.In this study,a composite consisting of Bi_(7)O_(9)I_(3) supported on graphitic carbon paper(Bi_(7)O_(9)I_(3)-CP)was synthesized via the in situ transformation of a BiOl-deposited carbon paper precursor(BiOl-CP).The as-prepared Bi_(7)O_(9)I_(3)-CP exhibited higher visible-light-driven photocatalytic activity than both Bi_(7)O_(9)I_(3) and BiOI-CP precursor for phenol removal.The improved photocatalytic activity of Bi_(7)O_(9)I_(3)-CP was attributed to its hierarchical structure and promoted carrier separation,as revealed by photoluminescence,pore structure,and reactive radical analyses.Moreover,owing to its macroscale size and flexibility,the Bi_(7)O_(9)I_(3)-CP composite could be easily operated and reused,which are favorable for practical applications.
文摘The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production.The light absorption capacity,electron-hole separation efficiency and H_(2)-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon(NC)layer and the S-scheme heterojunction.Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions.Moreover,the NC layer could simultaneously reduce the photocorrosion of Cu_(2)O and promote the electron transfer.Experimental results demonstrate that the CTF-7%Cu_(2)O@NC composite shows outstanding hydrogen-production performance under visible light,achieving 15645μmol∙g^(−1)∙h^(−1),significantly surpassing the photocatalytic activity of pure CTF(2673μmol∙g^(−1)∙h^(−1)).This study introduces a novel approach to the development of efficient and innovative photocatalytic materials,strongly supporting the advancement of sustainable hydrogen energy.
基金financially supported by the National Natural Science Foundation of China(Nos.51872220 and 21871030)the Natural Science Foundation of Hunan Province of China(Nos.2018JJ2456 and 2018JJ2457)the Scientific Research Fund of Hunan Provincial Education Department of China(No.18A370)。
文摘In this study,a hierarchical Bi2O3/TiO2 fibrous composite was in-situ fabricated on an electrospun TiO2 nanofiber at ambient temperature.In the Bi2O3/TiO2 composite,S-scheme electron migration occurred between Bi2O3 and TiO2.In the photocatalytic degradation of phenol under simulated sunlight,the asprepared Bi2O3/TiO2 nanofibers considerably outperformed Bi2O3 nanoparticles and TiO2 nanofibers.This improvement is contributed by maintaining and effectively utilizing the useful carriers and consuming the useless holes and electrons,realized by the S-scheme heterojunction and hierarchical structure.This study also provides an alternative design fashion for photocatalysts.
基金This work is financially supported by the National Natural Foun-dation of China(Nos.52174238,21871030,21975084,51672089 and 52073034).
文摘As an industrial benign oxidant and alternative clean energy carrier for fuel cells,hydrogen peroxide(H_(2)O_(2))becomes the fo-cus of numerous studies.Photocatalytic H_(2)O_(2) synthesis becomes a sustainable protocol[1,2].However,traditional biphase systems suffer from the agglomeration and recycling difficulty of suspended photocatalysts,as well as sluggish delivery of gas reactants,which induces severe charge recombination and slow reaction kinetics[3].
基金the National Nature Science Foundation of China(No.21871030,52174238)Hunan Provincial Natural Science Foundation of China(No.2020JJ4644,2018JJ2456)the Research Foundation of Education Bureau of Hunan Provincial(No.19A053,19B062)。
文摘BiOCl as a representative layered bismuth-based photocatalyst with Sillén-structure has aroused wide public concern on photocatalytic degradation.However,the photocatalytic efficiency of pristine BiOCl is currently restricted by its low optical absorption and charge separation efficiency.Herein,step-scheme(S-scheme)heterojunctions of In_(2)O_(3) nanoparticle and BiOCl micron-sheet were constructed by a convenient molten salt method by using a LiNO_(3)-KNO_(3) system.The In_(2)O_(3)-BiOCl heterojunctions exhibit higher optical absorption performance from 380 nm to 700 nm than the pristine BiOCl and enhanced photocatalytic property toward ciprofloxacin(CIP)degradation under Xenon lamp illumination.The sample 20%In_(2)O_(3) -BiOCl showed the highest photodegradation efficiency,attaining 91%removal of CIP within 35 min,which was 39.6 times and 3.2 times higher than that of pristine In_(2)O_(3) and BiOCl,respectively.The improved photodegradation property mainly resulted from the novel S-scheme mechanism,which boosted highly efficient separation of the photo-induced carriers.The photoluminescence spectrometric test and transient photocurrent response results demonstrated that In_(2)O_(3)-BiOCl composite exhibited efficient separation of photo-generated charge carriers.This work would provide new insights into the design of novel S-scheme photocatalytic systems with applicability in photocatalytic water treatment.
基金sustained by the National Natural Science Foundation of China(Nos.21975110 and 21972058)financial support from Taishan Youth Scholar Program of Shandong Provincesupported by the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(No.SKLPEE-KF202102)。
文摘The conversion of solar energy in a wide spectrum region to clean fuel,H_(2),remains a challenge in the field of photocatalysis.Herein,plasmonic TiN nanobelts,as a novel cocatalyst,were coupled with CdS nanoparticles to construct a 0D/1D CdS/TiN heterojunction.Utilization of the localized surface plasmon resonance(LSPR)effect generated from TiN nanobelts was effective in promoting light absorption in the near-infrared region,accelerating charge separation,and generating hot electrons,which can effectively improve the photocatalytic H_(2) generation activity of the 0D/1D CdS/TiN heterojunction over a wide spectral range.Furthermore,owing to the high metallicity and low work function,an ohmic-junction was formed between the CdS and TiN,favoring the transfer of hot electrons generated from TiN nanobelts the CdS nanoparticles,followed by the reaction with water to generate H_(2).Consequently,the 0D/1D CdS/TiN heterojunction demonstrated H_(2) generation activity even under light irradiation at 760 nm,while the pure CdS and Pt nanoparticles modified CdS presented no activity.This work opens a new insight into coupling plasmonic cocatalysts to realize full spectrum H_(2) production.
基金National Natural Science Foundation of China(21975084,51672089)Natural Science Foundation of Guangdong Province(2021A1515010075)for their support
文摘Photocatalytic hydrogen evolution through water splitting holds tremendous promise for converting solar energy into a clean and renewable fuel source.However,the efficiency of photocatalysis is often hindered by poor light absorption,insufficient charge separation,and slow reaction kinetics of the photocatalysts.In this study,we designed and synthesized a novel S-scheme heterojunction comprising Ti_(3)C_(2)MXene,CdS nanorods,and nitrogen-doped carbon coated Cu_(2)O(Cu_(2)O@NC)core-shell nanoparticles.Ti_(3)C_(2)MXene as a cocatalyst enhances the light absorption and charge transfer of CdS nanorods.Simultaneously,the core-shell Cu_(2)O@NC nanoparticles establish a pathway for transferring photogenerated electrons and create a favorable band alignment for efficient hydrogen evolution.The synergistic effects of Ti_(3)C_(2)MXene and Cu_(2)O@NC on CdS nanorods result in multiple charge transfer channels and improved photocatalytic performance.The optimal hydrogen evolution rate of the Ti_(3)C_(2)-CdS-Cu_(2)O@NC S-scheme heterojunction photocatalyst is 7.4 times higher than that of pure CdS.Experimental techniques and DFT calculations were employed to explore the structure,morphology,optical properties,charge dynamics,and band structure of the heterojunction.The results revealed that the S-scheme mechanism effectively suppresses the recombination of photogenerated carriers and facilitates the separation and migration of photo-generated electrons and holes to the reaction sites.Furthermore,Ti_(3)C_(2)MXene provides abundant active sites essential for accelerating the surface H_(2)-evolution reaction kinetics.The Cu_(2)O@NC core-shell nanoparticles with a large surface area and high stability are closely adhered to CdS nanorods and establish an S-scheme internal electric field with CdS nanorods to drive charge separation.This investigation provides valuable insights into the rational design of CdS-based photocatalysts,enabling efficient hydrogen production by harnessing the robust kinetic driving force provided by the S-scheme heterojunctions.
基金supported by the National Natural Science Foundation of China(51872087)the National Natural Science Foundation of China(21871030)+2 种基金the Research Foundation of Education Bureau of Hunan Provincial(19A053,19B062)the Hunan Provincial Natural Science Foundation of China(2018JJ2456,2020JJ4644)the Hunan Provincial Natural Science Foundation of China(14JJ5010)。
文摘Constructing noble-metal-free loaded catalyst with high-efficiency photocatalytic activity by a simple and scalable method is of profound significance for fundamental research and practical application.Herein,a simple one-pot method was used to synthesize novel samples of array-like sulfur-doped graphitic carbon nitride(SCN)nanosheets with ultrathin MoS2 loading(MS/SCN-x%).The ultrathin MoS2 cocatalyst was evenly distributed on the surface of SCN and was linked to the main catalyst by covalent chemical bonds.Benefited from the multiple advantages of the array-like porous nanosheets structure with rich exposed surface,covalent cross-linking structure,and enhanced visible light absorption,the MS/SCN-2.5%composites drastically improve hydrogen evolution performance,which is superior to original MoS2 nanosheet modified by two-step mixing method,and also rivals with Pt/SCN.The designing strategy of photocatalyst modified by noble-metal-free cocatalyst with covalent bond structure provides fascinating insights into enhanced photocatalytic hydrogen evolution.