Lentil(Lens culinaris Medik.), a diploid(2n = 14) with a genome size greater than 4000 Mbp, is an important cool season food legume grown worldwide. The availability of genomic resources is limited in this crop specie...Lentil(Lens culinaris Medik.), a diploid(2n = 14) with a genome size greater than 4000 Mbp, is an important cool season food legume grown worldwide. The availability of genomic resources is limited in this crop species. The objective of this study was to develop polymorphic markers in lentil using publicly available curated expressed sequence tag information(ESTs). In this study, 9513 ESTs were downloaded from the National Center for Biotechnology Information(NCBI) database to develop unigene-based simple sequence repeat(SSR) markers. The ESTs were assembled into 4053 unigenes and then analyzed to identify 374 SSRs using the MISA microsatellite identification tool. Among the 374 SSRs, 26 compound SSRs were observed.Primer pairs for these SSRs were designed using Primer3 version 1.14. To classify the functional annotation of ESTs and EST–SSRs, BLASTx searches(using E-value 1 × 10-5) against the public UniP rot(http://www.uniprot.org/) and NCBI(http://www.ncbi.nlh.nih.gov/) databases were performed. Further functional annotation was performed using PLAZA(version3.0) comparative genomics and GO annotation was summarized using the Plant GO slim category. Among the synthesized 312 primers, 219 successfully amplified Lens DNA. A diverse panel of 24 Lens genotypes was used to identify polymorphic markers. A polymorphic set of 57 markers successfully discriminated the test genotypes. This set of polymorphic markers with functional annotation data could be used as molecular tools in lentil breeding.展开更多
Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA;1,2,3,4,5,6-hexakis myo-inos...Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA;1,2,3,4,5,6-hexakis myo-inositol) reduces mineral micronutrient bioavailability, reduction of PA levels could increase the bioavailability of biofortified iron (Fe), zinc (Zn), calcium (Ca), and magnesium (Mg). PA is viewed as an anti-nutrient, yet PA and other inositol phosphates have also demonstrated positive health benefits. Phytic acid analysis in the agricultural, food, and nutritional sciences is typically carried out by colorimetry and chromatographic techniques. In addition, advanced techniques such as nuclear magnetic resonance and synchrotron X-ray absorption spectroscopy have also been used in phytic acid analysis. The colorimetric analysis may overestimate PA levels and synchrotron X-ray absorption techniques may not detect very low levels of inositol phosphates. This short communication discusses the advantages and disadvantages of each widely used phytic acid analysis method, and suggests high performance anion exchange (HPAE) chromatography with conductivity detection (CD) based analysis can achieve greater accuracy for the identification and quantification of inositol phosphates. Accurate characterization and quantification of PA and inositol phosphates will inform PA reduction and biofortification efforts, allowing retention of the benefits of non-phytic inositol phosphates for both plants and humans.展开更多
Inositol phosphates are the main form of phosphorous (P) storage in legume seeds. Mutants low in inositol hexaphosphate (IP6), also known as phytic acid (PA), have been developed to increase iron (Fe) bioavailability ...Inositol phosphates are the main form of phosphorous (P) storage in legume seeds. Mutants low in inositol hexaphosphate (IP6), also known as phytic acid (PA), have been developed to increase iron (Fe) bioavailability and reduce P waste to the environment. The objectives of this study were to determine 1) inositol-P form changes during germination, and 2) the effect of P fertilizer application on seed PA, total P, and Fe concentration of three field pea (Pisum sativum L.) cultivars and two low-PA lines grown under greenhouse conditions. Low-PA field pea lines clearly had lower PA (1.3 - 1.4 mg·g-1) than cultivars (3.1 - 3.7 mg·g-1). Phytic acid concentration in both cultivars and low-PA lines decreased during germination, but tended to increase seven days after germination. Levels of inositol-3-phosphate-phosphate (IP3-P;0.6 mg·g-1) and inorganic P (1.8 - 2.0 mg·g-1) were higher in low-PA lines than in the field pea cultivars. Reduction of PA in low-PA line seeds may reduce seed Fe and total P concentrations, as levels in the low-PA lines (37 - 42 mg·kg-1 Fe;4003 - 4473 mg·kg-1 total P) were typically less than in field pea cultivars (37 - 55 mg·kg-1 Fe;3208 - 4985 mg·kg-1 total P) at different P fertilizer rates. Overall, IP3 is the major form of P present in low-PA field pea lines during germination;however IP6 is the major form of P present in field pea cultivars. Therefore, low-PA field pea lines could be a potential solution to increase Fe bioavailability, feed P utilization, and reduce P waste to the environment.展开更多
Legumes are high-protein, medium-energy and micronutrient-rich food consumed in many parts of the world including Africa. This study evaluated the levels of specific phenolic compounds in three legumes. Two varieties ...Legumes are high-protein, medium-energy and micronutrient-rich food consumed in many parts of the world including Africa. This study evaluated the levels of specific phenolic compounds in three legumes. Two varieties of the common bean, (Phaseolus vulgaris L.) soybeans (Glycine max L.), and peas (Pisum sativum L.) from Rwanda were analyzed using high performance liquid chromatography with diode array detection. The phenolic compounds were identified by comparison to the chromatographic retention times and UV spectra of known reference compounds. This study results clearly shows the presence of 11 different phenolic compounds in common beans: gallic acid, (+)-catechin, (–)-epicatechin, caffeic acid, o-coumaric acid, chlorogenic acid, quercetin, 4-hydrobenzoic acid, syringic acid, ferulic acid and vanillic acid. The concentration ranged from 0.59 to 2.27 mg/kg for epicatechin. High levels of catechin (13.5 to 57.9 mg/kg) ferulic acid (26.1 to 47.6 mg/kg) were also observed. Therefore, the results of this study show that Rwandan common beans are a good source of phenolic acids in particular catechins and ferulic acid.展开更多
基金Financial assistance from ICARDA, Morocco, in the form of a brief projectgrant support from the Northern Pulse Growers Association and the USA Dry Pea and Lentil Council are gratefully acknowledged
文摘Lentil(Lens culinaris Medik.), a diploid(2n = 14) with a genome size greater than 4000 Mbp, is an important cool season food legume grown worldwide. The availability of genomic resources is limited in this crop species. The objective of this study was to develop polymorphic markers in lentil using publicly available curated expressed sequence tag information(ESTs). In this study, 9513 ESTs were downloaded from the National Center for Biotechnology Information(NCBI) database to develop unigene-based simple sequence repeat(SSR) markers. The ESTs were assembled into 4053 unigenes and then analyzed to identify 374 SSRs using the MISA microsatellite identification tool. Among the 374 SSRs, 26 compound SSRs were observed.Primer pairs for these SSRs were designed using Primer3 version 1.14. To classify the functional annotation of ESTs and EST–SSRs, BLASTx searches(using E-value 1 × 10-5) against the public UniP rot(http://www.uniprot.org/) and NCBI(http://www.ncbi.nlh.nih.gov/) databases were performed. Further functional annotation was performed using PLAZA(version3.0) comparative genomics and GO annotation was summarized using the Plant GO slim category. Among the synthesized 312 primers, 219 successfully amplified Lens DNA. A diverse panel of 24 Lens genotypes was used to identify polymorphic markers. A polymorphic set of 57 markers successfully discriminated the test genotypes. This set of polymorphic markers with functional annotation data could be used as molecular tools in lentil breeding.
文摘Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA;1,2,3,4,5,6-hexakis myo-inositol) reduces mineral micronutrient bioavailability, reduction of PA levels could increase the bioavailability of biofortified iron (Fe), zinc (Zn), calcium (Ca), and magnesium (Mg). PA is viewed as an anti-nutrient, yet PA and other inositol phosphates have also demonstrated positive health benefits. Phytic acid analysis in the agricultural, food, and nutritional sciences is typically carried out by colorimetry and chromatographic techniques. In addition, advanced techniques such as nuclear magnetic resonance and synchrotron X-ray absorption spectroscopy have also been used in phytic acid analysis. The colorimetric analysis may overestimate PA levels and synchrotron X-ray absorption techniques may not detect very low levels of inositol phosphates. This short communication discusses the advantages and disadvantages of each widely used phytic acid analysis method, and suggests high performance anion exchange (HPAE) chromatography with conductivity detection (CD) based analysis can achieve greater accuracy for the identification and quantification of inositol phosphates. Accurate characterization and quantification of PA and inositol phosphates will inform PA reduction and biofortification efforts, allowing retention of the benefits of non-phytic inositol phosphates for both plants and humans.
文摘Inositol phosphates are the main form of phosphorous (P) storage in legume seeds. Mutants low in inositol hexaphosphate (IP6), also known as phytic acid (PA), have been developed to increase iron (Fe) bioavailability and reduce P waste to the environment. The objectives of this study were to determine 1) inositol-P form changes during germination, and 2) the effect of P fertilizer application on seed PA, total P, and Fe concentration of three field pea (Pisum sativum L.) cultivars and two low-PA lines grown under greenhouse conditions. Low-PA field pea lines clearly had lower PA (1.3 - 1.4 mg·g-1) than cultivars (3.1 - 3.7 mg·g-1). Phytic acid concentration in both cultivars and low-PA lines decreased during germination, but tended to increase seven days after germination. Levels of inositol-3-phosphate-phosphate (IP3-P;0.6 mg·g-1) and inorganic P (1.8 - 2.0 mg·g-1) were higher in low-PA lines than in the field pea cultivars. Reduction of PA in low-PA line seeds may reduce seed Fe and total P concentrations, as levels in the low-PA lines (37 - 42 mg·kg-1 Fe;4003 - 4473 mg·kg-1 total P) were typically less than in field pea cultivars (37 - 55 mg·kg-1 Fe;3208 - 4985 mg·kg-1 total P) at different P fertilizer rates. Overall, IP3 is the major form of P present in low-PA field pea lines during germination;however IP6 is the major form of P present in field pea cultivars. Therefore, low-PA field pea lines could be a potential solution to increase Fe bioavailability, feed P utilization, and reduce P waste to the environment.
文摘Legumes are high-protein, medium-energy and micronutrient-rich food consumed in many parts of the world including Africa. This study evaluated the levels of specific phenolic compounds in three legumes. Two varieties of the common bean, (Phaseolus vulgaris L.) soybeans (Glycine max L.), and peas (Pisum sativum L.) from Rwanda were analyzed using high performance liquid chromatography with diode array detection. The phenolic compounds were identified by comparison to the chromatographic retention times and UV spectra of known reference compounds. This study results clearly shows the presence of 11 different phenolic compounds in common beans: gallic acid, (+)-catechin, (–)-epicatechin, caffeic acid, o-coumaric acid, chlorogenic acid, quercetin, 4-hydrobenzoic acid, syringic acid, ferulic acid and vanillic acid. The concentration ranged from 0.59 to 2.27 mg/kg for epicatechin. High levels of catechin (13.5 to 57.9 mg/kg) ferulic acid (26.1 to 47.6 mg/kg) were also observed. Therefore, the results of this study show that Rwandan common beans are a good source of phenolic acids in particular catechins and ferulic acid.