期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images
1
作者 Nechirvan asaad zebari Chira Nadheef Mohammed +8 位作者 dilovan asaad zebari Mazin Abed Mohammed Diyar Qader Zeebaree Haydar Abdulameer Marhoon Karrar Hameed Abdulkareem Seifedine Kadry Wattana Viriyasitavat Jan Nedoma Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期790-804,共15页
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods... Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly. 展开更多
关键词 brain tumour deep learning feature fusion model MRI images multi‐classification
下载PDF
Artificial Intelligence Based Sentence Level Sentiment Analysis of COVID-19
2
作者 Sundas Rukhsar Mazhar Javed Awan +5 位作者 Usman Naseem dilovan asaad zebari Mazin Abed Mohammed Marwan Ali Albahar Mohammed Thanoon Amena Mahmoud 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期791-807,共17页
Web-blogging sites such as Twitter and Facebook are heavily influenced by emotions,sentiments,and data in the modern era.Twitter,a widely used microblogging site where individuals share their thoughts in the form of t... Web-blogging sites such as Twitter and Facebook are heavily influenced by emotions,sentiments,and data in the modern era.Twitter,a widely used microblogging site where individuals share their thoughts in the form of tweets,has become a major source for sentiment analysis.In recent years,there has been a significant increase in demand for sentiment analysis to identify and classify opinions or expressions in text or tweets.Opinions or expressions of people about a particular topic,situation,person,or product can be identified from sentences and divided into three categories:positive for good,negative for bad,and neutral for mixed or confusing opinions.The process of analyzing changes in sentiment and the combination of these categories is known as“sentiment analysis.”In this study,sentiment analysis was performed on a dataset of 90,000 tweets using both deep learning and machine learning methods.The deep learning-based model long-short-term memory(LSTM)performed better than machine learning approaches.Long short-term memory achieved 87%accuracy,and the support vector machine(SVM)classifier achieved slightly worse results than LSTM at 86%.The study also tested binary classes of positive and negative,where LSTM and SVM both achieved 90%accuracy. 展开更多
关键词 COVID-19 artificial intelligence machine learning deep learning sentimental analysis support vector classifier
下载PDF
Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm
3
作者 Adnan Hasan Bdair Aighuraibawi Selvakumar Manickam +6 位作者 Rosni Abdullah Zaid Abdi Alkareem Alyasseri Ayman Khallel dilovan asaad zebari Hussam Mohammed Jasim Mazin Mohammed Abed Zainb Hussein Arif 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期553-574,共22页
Internet Protocol version 6(IPv6)is the latest version of IP that goal to host 3.4×10^(38)unique IP addresses of devices in the network.IPv6 has introduced new features like Neighbour Discovery Protocol(NDP)and A... Internet Protocol version 6(IPv6)is the latest version of IP that goal to host 3.4×10^(38)unique IP addresses of devices in the network.IPv6 has introduced new features like Neighbour Discovery Protocol(NDP)and Address Auto-configuration Scheme.IPv6 needed several protocols like the Address Auto-configuration Scheme and Internet Control Message Protocol(ICMPv6).IPv6 is vulnerable to numerous attacks like Denial of Service(DoS)and Distributed Denial of Service(DDoS)which is one of the most dangerous attacks executed through ICMPv6 messages that impose security and financial implications.Therefore,an Intrusion Detection System(IDS)is a monitoring system of the security of a network that detects suspicious activities and deals with amassive amount of data comprised of repetitive and inappropriate features which affect the detection rate.A feature selection(FS)technique helps to reduce the computation time and complexity by selecting the optimum subset of features.This paper proposes a method for detecting DDoS flooding attacks(FA)based on ICMPv6 messages using a Binary Flower PollinationAlgorithm(BFPA-FA).The proposed method(BFPA-FA)employs FS technology with a support vector machine(SVM)to identify the most relevant,influential features.Moreover,The ICMPv6-DDoS dataset was used to demonstrate the effectiveness of the proposed method through different attack scenarios.The results show that the proposed method BFPAFA achieved the best accuracy rate(97.96%)for the ICMPv6 DDoS detection with a reduced number of features(9)to half the total(19)features.The proven proposed method BFPA-FAis effective in the ICMPv6 DDoS attacks via IDS. 展开更多
关键词 IPv6 ICMPV6 DDoS feature selection flower pollination algorithm anomaly detection
下载PDF
A Multi-Stream Scrambling and DNA Encoding Method Based Image Encryption
4
作者 Nashat Salih Abdulkarim Alsandi dilovan asaad zebari +4 位作者 Adel Al-zebari Falah Y.H.Ahmed Mazin Abed Mohammed Marwan Albahar Abdulaziz Ali Albahr 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1321-1347,共27页
Information security has emerged as a key problem in encryption because of the rapid evolution of the internet and networks.Thus,the progress of image encryption techniques is becoming an increasingly serious issue an... Information security has emerged as a key problem in encryption because of the rapid evolution of the internet and networks.Thus,the progress of image encryption techniques is becoming an increasingly serious issue and considerable problem.Small space of the key,encryption-based low confidentiality,low key sensitivity,and easily exploitable existing image encryption techniques integrating chaotic system and DNA computing are purposing the main problems to propose a new encryption technique in this study.In our proposed scheme,a three-dimensional Chen’s map and a one-dimensional Logistic map are employed to construct a double-layer image encryption scheme.In the confusion stage,different scrambling operations related to the original plain image pixels are designed using Chen’s map.A stream pixel scrambling operation related to the plain image is constructed.Then,a block scrambling-based image encryption-related stream pixel scrambled image is designed.In the diffusion stage,two rounds of pixel diffusion are generated related to the confusing image for intra-image diffusion.Chen’s map,logistic map,and DNA computing are employed to construct diffusion operations.A reverse complementary rule is applied to obtain a new form of DNA.A Chen’s map is used to produce a pseudorandom DNA sequence,and then another DNA form is constructed from a reverse pseudorandom DNA sequence.Finally,the XOR operation is performed multiple times to obtain the encrypted image.According to the simulation of experiments and security analysis,this approach extends the key space,has great sensitivity,and is able to withstand various typical attacks.An adequate encryption effect is achieved by the proposed algorithm,which can simultaneously decrease the correlation between adjacent pixels by making it near zero,also the information entropy is increased.The number of pixels changing rate(NPCR)and the unified average change intensity(UACI)both are very near to optimal values. 展开更多
关键词 Grayscale image encryption stream scrambling-confusion DNA encoding XOR operation chaotic systems
下载PDF
Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features 被引量:1
5
作者 Diyar Qader Zeebaree Adnan Mohsin Abdulazeez +2 位作者 dilovan asaad zebari Habibollah Haron Haza Nuzly Abdull Hamed 《Computers, Materials & Continua》 SCIE EI 2021年第3期3363-3382,共20页
Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve ... Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity. 展开更多
关键词 Breast cancer ultrasound image local binary pattern feature extraction noise reduction filters FUSION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部