期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
共找到24篇文章
< 1 2 >
每页显示 20 50 100
The Basic Principles of Kin Sociality and Eusociality: Human Evolution 被引量:7
1
作者 ding-yu chung 《Natural Science》 2016年第1期8-19,共12页
The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this p... The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination. 展开更多
关键词 Kin Sociality EUSOCIALITY Evolution Kin Selection Group Selection The Handicap-Care Principle Human Evolution SUPERNATURAL Hamilton’s Rule DOMESTICATION Shrinking Brain Upper Paleolithic Revolution
下载PDF
The Light-Dark Dual Universe for the Big Bang and Dark Energy 被引量:2
2
作者 ding-yu chung Volodymyr Krasnoholovets 《Journal of Modern Physics》 2013年第7期77-84,共8页
In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed ... In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The light-dark dual universe started from the zero-energy universe through the four-stage cyclic transformation. Emerging from the zero-energy universe, the four-stage transformation consists of the 11D (dimensional) positive-negative energy dual membrane universe, the 10D positive-negative energy dual string universe, the 10D positive-negative energy dual particle universe, and the 4D (light)-variable D (dark) positive-negative energy dual particle asymmetrical universe. The transformation can then be reversed back to the zero-energy universe through the reverse four-stage transformation. The light universe is an observable four-dimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a four-dimensional universe. The four-stage transformation explains the four force fields in our universe. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with observed 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. The zero-energy cyclic universe is based on the space-object structures. 展开更多
关键词 Cosmology LIGHT UNIVERSE DARK UNIVERSE DUAL UNIVERSE Big Bang Inflation Zero-Energy Cyclic UNIVERSE DARK ENERGY DARK MATTER Baryonic MATTER Force Fields
下载PDF
Singularity-Free Superstar as an Alternative to Black Hole and Gravastar 被引量:1
3
作者 ding-yu chung Volodymyr Krasnoholovets 《Journal of Modern Physics》 2013年第7期1-6,共6页
Singularity-free superstar is proposed as a model for the collapse of large stars and for GRBs, and as an alternative to black hole and gravastar. Similar to a superconductor, a superstar contains extreme force fields... Singularity-free superstar is proposed as a model for the collapse of large stars and for GRBs, and as an alternative to black hole and gravastar. Similar to a superconductor, a superstar contains extreme force fields that have non-zero momentum and non-zero wavelength to prevent the inactivation of force field at absolute zero and singularity (infinite interacting energy) at infinite density, respectively, based on the uncertainty principle. Emerging only at an extremely low temperature above absolute zero or an extremely high density below infinite density, extreme force fields are shortrange, and located in between a particle and its ordinary force fields (electromagnetic, weak, strong, and gravitational forces) to prevent the inactivation of force fields at absolute zero and singularity (infinite interacting energy) at infinite density in ordinary force fields. Extreme force fields are manifested as the bonds among electrons in a superconductor and among atoms in a Bose-Einstein condensate. When the stellar core of a large star reaches the critical extreme density during the stellar collapse, the stellar core is transformed into the super matter core with extreme force fields and ordinary force fields without singularity. A pre-superstar contains the super matter core, the ordinary matter region, and the thin phase boundary between the super matter core and the ordinary matter region. The stellar collapse increases the super matter core by converting the in falling ordinary energy and matter from the ordinary matter region into the super matter, and decreases the ordinary matter region. Eventually, the stellar breakup occurs to detach the ordinary matter region and the phase boundary from the super matter core, resulting in GRB to account for the observed high amount of gamma rays and the observed complex light curves in GRBs. Unlike black holes and gravastars that lose information, singularity-free superstars that keep all information exist. 展开更多
关键词 Black Hole SUPERSTAR Gravastar Extreme Force Field Uncertainty Principle SINGULARITY Space Structure Collapsar Gamma Ray Burst Neutron Star Pair Instability SUPERNOVA STELLAR BREAKUP
下载PDF
The Space Structure, Force Fields, and Dark Matter 被引量:1
4
作者 ding-yu chung Volodymyr Krasnoholovets 《Journal of Modern Physics》 2013年第4期27-31,共5页
It is proposed that the digital space structure consists of attachment space (denoted as 1) for rest mass and detachment space (denoted as 0) for kinetic energy. Attachment space attaches to object permanently with ze... It is proposed that the digital space structure consists of attachment space (denoted as 1) for rest mass and detachment space (denoted as 0) for kinetic energy. Attachment space attaches to object permanently with zero speed, and detachment space detaches from the object at the speed of light. The combination of attachment space and detachment space brings about the three structures: binary lattice space, miscible space, and binary partition space. Binary lattice space, (1 0)n, consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space without separation. Binary partition space, (1)n(0)n, consists of separated continuous phases of attachment space and detachment space. Binary lattice space, miscible space, and binary partition space constitute quantum mechanics, special relativity, and the extreme force fields, respectively. Through the detachment space, a higher dimensional particle in attachment space is sliced into infinitely surrounding a lower dimensional core attachment space, resulting in a particle surrounding by gauge field in the form of binary lattice space. The 10d particle can be sliced into 9d, 8d, 7d, 6d, 5d, and 4d particles equally by mass, corresponding to baryonic particle as 4d and dark matter as other 5 particles, so the ratio between baryonic matter and dark matter is 1 to 5, in agreement with the observed ratio. At extreme conditions, such as extremely low temperature, the gauge force field in the form of binary lattice space is transformed into the extreme force field in the form of binary partition space to explain extreme phenomena, such as superconductivity. 展开更多
关键词 Space Structure Quantum MECHANICS FORCE FIELDS DARK MATTER SUPERCONDUCTIVITY
下载PDF
The Higgs Boson in the Periodic System of Elementary Particles 被引量:1
5
作者 ding-yu chung Ray Hefferlin 《Journal of Modern Physics》 2013年第4期21-26,共6页
It is proposed that the observed Higgs Boson at the LHC is the Standard Model Higgs boson that adopts the existence of the hidden lepton condensate. The hidden lepton is in the forbidden lepton family, outside of the ... It is proposed that the observed Higgs Boson at the LHC is the Standard Model Higgs boson that adopts the existence of the hidden lepton condensate. The hidden lepton is in the forbidden lepton family, outside of the three lepton families of the Standard Model. Being forbidden, a single hidden lepton cannot exist alone;so it must exist in the lepton condensate as a composite of μ’ and μ’± hidden leptons and their corresponding antileptons. The calculated average mass of the hidden lepton condensate is 128.8 GeV in good agreements with the observed 125 or 126 GeV. The masses of the hidden lepton condensate and all elementary particles including leptons, quarks, and gauge bosons are derived from the periodic system of elementary particles. The calculated constituent masses are in good agreement with the observed values by using only four known constants: the number of the extra spatial dimensions in the eleven-dimensional membrane, the mass of electron, the mass of Z boson, and the fine structure constant. 展开更多
关键词 HIGGS BOSON PERIODIC SYSTEM ELEMENTARY PARTICLES
下载PDF
The Accurate Mass Formulas of Leptons, Quarks, Gauge Bosons, the Higgs Boson, and Cosmic Rays 被引量:2
6
作者 ding-yu chung 《Journal of Modern Physics》 2016年第12期1591-1606,共16页
One of the biggest unsolved problems in physics is the particle masses of all elementary particles which cannot be calculated accurately and predicted theoretically. In this paper, the unsolved problem of the particle... One of the biggest unsolved problems in physics is the particle masses of all elementary particles which cannot be calculated accurately and predicted theoretically. In this paper, the unsolved problem of the particle masses is solved by the accurate mass formulas which calculate accurately and predict theoretically the particle masses of all leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays (the knees-ankles-toe) by using only five known constants: the number (seven) of the extra spatial dimensions in the eleven-dimensional membrane, the mass of electron, the masses of Z and W bosons, and the fine structure constant. The calculated masses are in excellent agreements with the observed masses. For examples, the calculated masses of muon, top quark, pion, neutron, and the Higgs boson are 105.55 MeV, 175.4 GeV, 139.54 MeV, 939.43 MeV, and 126 GeV, respectively, in excellent agreements with the observed 105.65 MeV, 173.3 GeV, 139.57 MeV, 939.27 MeV, and 126 GeV, respectively. The mass formulas also calculate accurately the masses of the new particle at 750 GeV from the LHC and the new light boson at 17 MeV. The theoretical base of the accurate mass formulas is the periodic table of elementary particles. As the periodic table of elements is derived from atomic orbitals, the periodic table of elementary particles is derived from the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals. All elementary particles including leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays can be placed in the periodic table of elementary particles. The periodic table of elementary particles is based on the theory of everything as the computer simulation model of physical reality consisting of the mathematical computation, digital representation and selective retention components. The computer simulation model of physical reality provides the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals for the periodic table of elementary particles. 展开更多
关键词 Mass Formulas Particle Masses LEPTONS QUARKS Gauge Bosons Higgs Boson Cosmic Rays The Periodic Table of Elementary Particles Computer Simulation Knees-Ankles-Toe The Theory of Everything
下载PDF
We Are Living in a Computer Simulation 被引量:1
7
作者 ding-yu chung 《Journal of Modern Physics》 2016年第10期1210-1227,共18页
This paper posits that we are living in a computer simulation to simulate physical reality which has the same computer simulation process as virtual reality (computer-simulated reality). The computer simulation proces... This paper posits that we are living in a computer simulation to simulate physical reality which has the same computer simulation process as virtual reality (computer-simulated reality). The computer simulation process involves the digital representation of data, the mathematical computation of the digitized data in geometric formation and transformation in space-time, and the selective retention of events in a narrative. Conventional physics cannot explain physical reality clearly, while computer-simulated physics can explain physical reality clearly by using the computer simulation process consisting of the digital representation component, the mathematical computation component, and the selective retention component. For the digital representation component, the three intrinsic data (properties) are rest mass-kinetic energy, electric charge, and spin which are represented by the digital space structure, the digital spin, and the digital electric charge, respectively. The digital representations of rest mass and kinetic energy are 1 as attachment space for the space of matter and 0 as detachment space for the zero-space of matter, respectively, to explain the Higgs field, the reverse Higgs field, quantum mechanics, special relativity, force fields, dark matter, and baryonic matter. The digital representations of the exclusive and the inclusive occupations of positions are 1/2 spin fermion and integer spin boson, respectively, to explain spatial translation by supersymmetry transformation and dark energy. The digital representations of the allowance and the disallowance of irreversible kinetic energy are integral electric charges and fractional electric charges, respectively, to explain the confinements of quarks and quasiparticles. For the mathematical computation component, the mathematical computation involves the reversible multiverse and oscillating M-theory as oscillating membrane-string-particle whose space-time dimension (D) number oscillates between 11D and 10D and between 10D and 4D to explain cosmology. For the selective retention component, gravity, the strong force, electromagnetism, and the weak force are the retained events during the reversible four-stage evolution of our universe, and are unified by the common narrative of the evolution. 展开更多
关键词 Computer Simulation Physical Reality Virtual Reality Digital Computer Computer-Simulated Physics Digital Representation Selective Retention M-THEORY Space Structure Higgs Field Reverse Higgs Field Fractional Electric Charge Spin MULTIVERSE COSMOLOGY Force Fields Cyclic Universe
下载PDF
The Integer-Fraction Principle of the Digital Electric Charge for Quarks and Quasiparticles 被引量:1
8
作者 ding-yu chung 《Journal of Modern Physics》 2016年第10期1150-1159,共10页
In the integer-fraction principle of the digital electric charge, individual integral charge and individual fractional charge are the digital representations of the allowance and the disallowance of irreversible kinet... In the integer-fraction principle of the digital electric charge, individual integral charge and individual fractional charge are the digital representations of the allowance and the disallowance of irreversible kinetic energy, respectively. The disallowance of irreversible kinetic energy for individual fractional charge brings about the confinement of individual fractional charges to restrict irreversible movement resulted from irreversible kinetic energy. Collective fractional charges are confined by the short-distance confinement force field where the sum of the collective fractional charges is integer. As a result, fractional charges are confined and collective. The confinement force field includes gluons in QCD (quantum chromodynamics) for collective fractional charge quarks in hadrons and the magnetic flux quanta for collective fractional charge quasiparticles in the fractional quantum Hall effect (FQHE). The collectivity of fractional charges requires the attachment of energy as flux quanta to bind collective fractional charges. The integer-fraction transformation from integral charges to fractional charges consists of the three steps: 1) the attachment of an even number of flux quanta to individual integral charge fermions to form individual integral charge composite fermions, 2) the attachment of an odd number of flux quanta to individual integral charge composite fermions to form transitional collective integral charge composite bosons, and 3) the conversion of flux quanta into the confinement force field to confine collective fractional charge composite fermions converted from composite bosons. The charges of quarks are fractional, because QCD (the strong force) emerges in the universe that has no irreversible kinetic energy. Kinetic energy emerged in the universe after the emergence of the strong force. The charges of the quasiparticles in the FQHE are fractional because of the confinement by a two-dimensional system, the Landau levels, and an extremely low temperature and the collectivity by high energy magnetic flux quanta. From the integer-fraction transformation from integral charge electrons to fractional charge quarks, the calculated masses of pion, muon and constituent quarks are in excellent agreement with the observed values. 展开更多
关键词 Electric Charge Integral Charge Fractional Charge QUARKS Kinetic Energy Confinement The Fractional Quantum Hall Effect The Theory of Everything The Masses of Quarks The Mass of Muon The Mass of Pion Cosmology
下载PDF
The Three Postulates of the Theory of Everything 被引量:1
9
作者 ding-yu chung 《Journal of Modern Physics》 2016年第7期642-655,共14页
The three postulates of the posited dynamic and reversible theory of everything are: 1) the oscil-lating M-theory postulate for the oscillating matter structure, 2) the digital transitional Higgs-reversed Higgs fields... The three postulates of the posited dynamic and reversible theory of everything are: 1) the oscil-lating M-theory postulate for the oscillating matter structure, 2) the digital transitional Higgs-reversed Higgs fields postulate for the digital space structure, and 3) the reversible multiverse post-ulate for all physical laws and phenomena. The posited theory of everything based on the three postulates explains cosmology, the composition (baryonic matter, dark matter, and dark energy) in the universe, the periodic table of elementary particles (quarks, leptons, and bosons), the galaxy evolution, superconductivity, black hole, thermodynamic, and quantum mechanics. Oscillating M-theory is derived from oscillating membrane-string-particle whose space-time dimension number oscillates between 11D and 10D and between 10D and 4D. Space-time dimension number between 10 and 4 decreases with decreasing speed of light, decreasing vacuum energy, and in-creasing rest mass. The digital transitional Higgs-reversed Higgs fields are derived from digital attachment-detachment spaces which couple to particles. Under spontaneous symmetry breaking, the coupling of massless particle to zero-energy attachment space (the space for mass) produces the transitional nonzero-energy Higgs field-particle composite which under spontaneous symmetry restoring produces massive particle on zero-energy attachment space with the longitudinal component. The opposite of attachment space is detachment space as the space for kinetic energy and the nonzero-energy reverse Higgs field. The combination of n units of attachment space (de-noted as 1) and n units of detachment space (denoted as 0) brings about the three digital structures: binary partition space (1)<sub>n</sub>(0)<sub>n</sub>, miscible space (1 + 0)<sub>n</sub>, and binary lattice space (1 0)<sub>n</sub> to account for quantum mechanics, special relativity, and the force fields, respectively. In the third postulate, all physical laws and phenomena are permanently reversible in the multiverse, and temporary irreversible entropy increase is allowed. Our universe is an asymmetrical dual posi-tive-energy-negative-energy universe where the positive-energy universe on attachment space absorbed the interuniversal void on detachment space to result in the combination of attachment space and detachment space, while the negative-energy universe did not absorb the interuniversal void, resulting in temporary irreversible entropy increase through reversibility breaking, sym-metry violation, and low entropy beginning. Guided by the reversible negative-energy universe, our dual universe is a globally reversible cyclic dual universe. 展开更多
关键词 The Theory of Everything M-THEORY Higgs Field Reverse Higgs Field MULTIVERSE COSMOLOGY Matter Structure Space Structure Entropy THERMODYNAMIC Cyclic Universe Interuniversal Void
下载PDF
Split Membrane 11D Spacetime = 1D Eleventh Dimension Interval Space + 6D Rishon Space + 3D Higgs Space + 1D Einstein Time: Cosmology
10
作者 ding-yu chung 《Journal of Modern Physics》 2019年第11期1310-1341,共32页
The paper posits that the cyclic universe cosmology involves the split of the membrane 11D (11 dimensional) spacetime into the 1D eleventh dimension orbifold interval space to form gravity, the 6D discrete interior ri... The paper posits that the cyclic universe cosmology involves the split of the membrane 11D (11 dimensional) spacetime into the 1D eleventh dimension orbifold interval space to form gravity, the 6D discrete interior rishon space (TTT-VVV for positron-neutrino or TTV-TVV for?quarks) to form the Standard Model, the 3D Higgs space (attachment space to attach matter or detachment space to detach matter) to form the Higgs or reverse Higgs field, and 1D Einstein time to be shared by all spaces. To establish particle masses, spacetime dimension number decreases with decreasing speed of light, decreasing vacuum energy, and increasing rest mass. The 4D and the 10D have zero and the highest vacuum energies, respectively. The cyclic universe cosmology starts with the zero-energy 4D inter-universal void and the positive-energy membrane and negative-energy antimembrane 11D dual universe which is split into four equal 10D string branes, including the 10D positive-energy weak-gravity brane with matter, negative-energy strong-gravity brane, negative-energy weak-gravity brane with antimatter, and positive-energy strong-gravity brane in the 11D bulk with the 1D eleventh dimension interval space in between the strong and the weak-gravity branes. To form the home universe where we inhabit, the 10D positive-energy weak-gravity brane with attachment space absorbed the zero-energy 4D inter-universal void with detachment space, resulting in the combination of rest mass from attachment space and kinetic energy from detachment space, the formation of the 4D spacetime universe by transforming 6D connected exterior space into 6D discrete interior rishon space, and cosmic inflation. The other three branes did not absorb the inter-universal void, resulting in the oscillating dimension branes between 10D and 4D stepwise without kinetic energy. The three branes are hidden when D > 4, and they are dark energy when D = 4. The split 11D spacetime and cosmology provide the matter-antimatter imbalance and the accurately calculated masses for leptons, quarks, hadrons, gauge bosons, the Higgs boson, gravity, dark matter, and dark energy. 展开更多
关键词 String Theory Rishon Cyclic Universe COSMOLOGY DARK Energy DARK Matter Particle Masses
下载PDF
Pseudoscalar Top-Bottom Quark-Antiquark Composite as the Resonance with 28 GeV at the LHC: Hadron Masses and Higgs Boson Masses Based on the Periodic Table of Elementary Particles
11
作者 ding-yu chung 《Journal of Modern Physics》 2018年第14期2638-2656,共19页
This paper posits that the observed resonance with 28 GeV at the LHC is the pseudoscalar top-bottom quark-antiquark composite which has the calculated mass of 27.9 GeV derived from the periodic table of elementary par... This paper posits that the observed resonance with 28 GeV at the LHC is the pseudoscalar top-bottom quark-antiquark composite which has the calculated mass of 27.9 GeV derived from the periodic table of elementary particles. The calculated mass is for the mass of?. In the periodic table of elementary particles, t quark (13.2 GeV) in the pseudoscalar top-bottom quark-antiquark composite is only a part of full t quark (175.4 GeV), so pseudoscalar?(26.4 GeV) cannot exist independently, and can exist only in the top-bottom quark-antiquark composite. As shown in the observation at the LHC, the resonance with 28 GeV weakens significantly at the higher energy collision (13 TeV), because at the higher collision energy, low-mass pseudoscalar? in the composite likely becomes independent full high-mass vector? moving out of the composite. The periodic table of elementary particles is based on the seven mass dimensional orbitals derived from the seven extra dimensions of 11 spacetime dimensional membrane. The calculated masses of hadrons are in excellent agreement with the observed masses of hadrons by using only five known constants. For examples, the calculated masses of proton, neutron, pion (&pi;&plusmn;), and pion (&plusmn;0) are 938.261, 939.425, 139.540, and 134.982 MeV in excellent agreement with the observed 938.272, 939.565, 139.570, and 134.977MeV, respectively with 0.0006%, 0.01%, 0.02%, and 0.004%, respectively for the difference between the calculated and observed mass. The calculated masses of the Higgs bosons as the intermediate vector boson composites are in excellent agreements with the observed masses. In conclusion, the calculated masses of the top-bottom quark-antiquark composite (27.9 GeV), hadrons, and the Higgs bosons by the periodic table of elementary particles are in excellent agreement with the observed masses of resonance with 28 GeV at the LHC, hadrons, and the Higgs bosons, respectively. 展开更多
关键词 LHC CMS RESONANCE b QUARK Jet Periodic Table of Elementary Particles Top QUARK BOTTOM QUARK Hadron MASSES Mass Calculation Higgs Boson
下载PDF
The Periodic Table of Elementary Particles for Baryonic Matter and Dark Matter: Upward-Going ANITA Events
12
作者 ding-yu chung 《Journal of Modern Physics》 2018年第13期2308-2319,共12页
This paper posits that the upward-going ANITA events are derived from the cosmic ray of the baryonic-dark matter (BDM) Higgs boson. In the extended standard model (ESM) for baryonic matter and dark matter, the spontan... This paper posits that the upward-going ANITA events are derived from the cosmic ray of the baryonic-dark matter (BDM) Higgs boson. In the extended standard model (ESM) for baryonic matter and dark matter, the spontaneous symmetry breaking through the Higgs mechanism for the symmetrical massless baryonic matter left-handed neutrinos and massless dark matter right-handed neutrinos produced massless baryonic matter left-handed neutrinos, sterile massive dark matter neutrinos, and the BDM Higgs boson. The BDM Higgs boson is the composite of the high-mass tau neutrino and the high-mass dark matter neutrino. During the passage through the high-density part of the Earth, the BDM Higgs boson is transformed into the oscillating BDM Higgs boson between the composite of the high-mass tau neutrino and the high-mass dark matter neutrino and the composite of the high-mass tau neutrino and the low-mass dark matter neutrino. The oscillating BDM Higgs boson decays into the high-mass tau neutrino with the extra energy and the low-mass dark matter neutrino (27 eV) in the low-density water-ice layer of the Earth. The high-mass tau neutrino is converted into ultra-high-energy tau neutrino which decays into tau lepton through the charged-current interactions, and tau lepton emerges from the surface of ice. Based on the periodic table of elementary particles, the calculated value for the high-mass tau neutrino with the extra energy is 0.47 EeV in good agreement with the observed 0.56 and 0.6 EeV. The periodic table of elementary particles for baryonic matter, dark matter, and gravity is based on the seven principal mass dimensional orbitals for stable baryonic matter leptons (electron and left-handed neutrinos), gauge bosons, gravity, and dark matter and the seven auxiliary mass dimensional orbitals for unstable leptons (muon and tau) and quarks, and calculates accurately the masses of all elementary particles and the cosmic rays by using only five known constants. 展开更多
关键词 ANITA Periodic Table of Elementary Particles HIGGS BOSON Baryonic-Dark MATTER HIGGS BOSON Cosmic RAYS Upward-Going DARK MATTER Baryonic MATTER Extended Standard Model
下载PDF
String Theory with Oscillating Space-Time Dimension Number
13
作者 ding-yu chung 《Journal of Modern Physics》 2014年第6期464-472,共9页
In conventional string theory with fixed space-time dimension number, the extra space dimensions are compactized. In string theory with oscillating space-time dimension number, dimension number oscillates between 11D ... In conventional string theory with fixed space-time dimension number, the extra space dimensions are compactized. In string theory with oscillating space-time dimension number, dimension number oscillates between 11D and 10D and between 10D and 4D reversibly, and there is no compactization. Dimension number decreases with decreasing speed of light and increasing rest mass. The 4D particle has the lowest speed of light and the highest rest mass. The two different oscillations between 10D and 4D are the stepwise oscillation passing through every dimension number and the direct oscillation oscillating directly between 10D and 4D without the intermediate dimension numbers. Dark energy represents the stepwise oscillation, and dark energy becomes observable only when it has 4D space-time. 4D baryonic matter and 4D dark matter represent the direct oscillation directly from 10D to 4D. Our universe is the dual cyclic universe of the dark energy universe and the baryonic-dark matter universe. The Big Bang in the baryonicdark matter universe produced irreversible kinetic energy that stopped the reversible direct oscillation. The reversible direct oscillation will resume after the Big Crush to remove irreversible kinetic energy. Our cyclic universe started from the zero-energy universe through the four-stage transformation. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 68.3, 26.4, and 5.3, respectively, in agreement with observed 68.3, 26.8, and 4.9, respectively. According to the calculation, dark energy started in 4.28 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. 展开更多
关键词 String Theory DIMENSION NUMBER Oscillation Cosmology Dual UNIVERSE Big Bang INFLATION Cyclic UNIVERSE DARK Energy DARK MATTER Baryonic MATTER Force Fields
下载PDF
AGN Singularities and Jets Modelled with the Superstar Scenario
14
作者 ding-yu chung 《International Journal of Astronomy and Astrophysics》 2019年第2期142-153,共12页
In this paper we present solutions with the superstar scenario for the problems of singularity and the relativistic jet in AGN (Active Galactic Nuclei) based on supermassive black hole with singularity. The five-zone ... In this paper we present solutions with the superstar scenario for the problems of singularity and the relativistic jet in AGN (Active Galactic Nuclei) based on supermassive black hole with singularity. The five-zone structure of superstar from inside to outside consists of the Singularity-Free Superstar Core (SC), the short-range repulsive super force field (SFF) near the event horizon, the superstar lepton sphere (SLS) containing infalling leptons (electron-positron pairs), the superstar ergosphere (SE), and the superstar accretion disk (SAD). As in the Meissner effect in superconductor, the short-range SFF repulses leptons in the SLS preventing singularity, while infalling leptons from the SAD and the SE continue to enter the SLS through the strong gravity of the SC. When the density at the bottom of the SLS reaches the critical density, leptons fall into the SC with the corresponding size increase of the SC to prevent singularity. Without further infalling leptons, the short-range repulsive force from the SFF disintegrates the SLS into the SLS plasma fragments (electron-positron pair plasma), detaching from the SC. Some SLS plasma fragments in the SAD generate the broad relativistic SAD jet, and some SLS plasma fragments in the SE generate the coincident narrow relativistic SE jet. In this two-jet model (the origin of the spine-sheath jet structure), protected by the SAD jet, the fast and narrow SE jet inside the slow and broad SAD jet generates the VHE (very high energy ≥ 100 GeV) Synchrotron Self Compton (SSC) gamma-ray emission without the attenuation by the photons in the BLR (broad line region) of flat spectrum radio quasar (FSRQ). In conclusion, AGN based on supermassive superstar provide the solutions for singularity, VHE gamma-ray emissions in FSRQs and FR1 type radio galaxies, AGN jet structure, and AGN jet type. 展开更多
关键词 ANG RELATIVISTIC Jet SUPERSTAR Supermassive SINGULARITY Black Hole Super Force Field Very High Energy GAMMA-RAY Emission
下载PDF
The Basic Cause of Superconductivity
15
作者 ding-yu chung 《Journal of Modern Physics》 2015年第1期26-36,共11页
This paper posits an extra force field, “super force field”, as the short-distance additional force field to ordinary force fields (gravitational, weak, electromagnetic, and strong) at absolute zero or extremely hig... This paper posits an extra force field, “super force field”, as the short-distance additional force field to ordinary force fields (gravitational, weak, electromagnetic, and strong) at absolute zero or extremely high density. The short distance super force field accounts for quantum phase transition at absolute zero, and provides the basic cause of superconductivity above absolute zero by quantum fluctuation. At absolute zero or extremely high density, to prevent inactivation or singularity, respectively, the short-distance super force field emerges in between the core particle and the ordinary force field, resulting in the super ordinary force field. In the super ordinary force field, the short-distance super force field excludes the long-distance ordinary force field. At absolute zero, the super ordinary force field emerges to account for quantum phase transition at absolute zero. Through quantum fluctuation, the super ordinary force appears above absolute zero as in superconductivity. Through quantum fluctuation, superconducting electric current is “super current” as one giant quantum state with the super force field that does not interact with ordinary forces, resulting in zero resistance. 展开更多
关键词 SUPERCONDUCTIVITY Digital Space QUANTUM Mechanics Uncertainty Principle Super Force Field QUANTUM Phase Transition QUANTUM FLUCTUATION SUPERCONDUCTOR COOPER PAIRS
下载PDF
The Theory of Everything as the Reversibility Theory
16
作者 ding-yu chung 《Journal of Modern Physics》 2015年第13期1820-1832,共13页
In the posited reversibility theory, 1) all physical laws and phenomena are permanently reversible, 2) all physical laws are derived from the reversible M-theory (extension of string theory) in the reversible multiver... In the posited reversibility theory, 1) all physical laws and phenomena are permanently reversible, 2) all physical laws are derived from the reversible M-theory (extension of string theory) in the reversible multiverse, and 3) temporary irreversible entropy increase is allowed through reversibility breaking, symmetry breaking, and low entropy beginning. Dealing with all physical laws and phenomena, the reversibility theory is the theory of everything, including thermodynamic, cosmology, the composition (baryonic matter, dark matter, and dark energy) in the universe, the periodic table of all elementary particles, the galaxy evolution, superconductivity, and black hole. In the reversible M-theory, space-time dimension number oscillates between 11D (space-time dimension) and 10D and between 10D and 4D. The reversible M-theory includes 11D membrane, 10D string, and variable D particle. Space-time dimension number between 10 and 4 decreases with decreasing speed of light, decreasing vacuum energy, and increasing rest mass. In our dual universe of positive-negative energy universe, the reversible oscillation between 10D with and 4D in the negative energy universe without kinetic energy is the reversible cyclic fractionalization-condensation for the reversible cyclic expansion-contraction of the universe. Without kinetic energy, the individual particles have no individual momenta for entropy increase. The negative energy universe is the locally reversible universe for dark energy. In the positive energy universe where we live, the absorption of the interuniversal void forced the direct transformation from 10D to 4D as the inflation followed by the Big Bang, and created kinetic energy that provided individual momenta for individual particles to produce irreversible entropy increase, resulting in the reversibility breaking of the reversible oscillation. The positive energy universe is the locally irreversible universe. The dual universe as a whole is reversible guided by the reversible negative energy universe. As a result, the irreversible positive energy universe with the irreversible entropy increase is temporary, and will disappear. 展开更多
关键词 The THEORY of Everything REVERSIBILITY THEORY Entropy Thermodynamic Cyclic Universe MULTIVERSE Interuniversal VOID M-THEORY Cosmology String THEORY
下载PDF
The Cyclic Universes Model Based on the Split Division Algebras
17
作者 ding-yu chung 《Journal of Modern Physics》 2018年第13期2257-2273,共17页
The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The... The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The split algebras (complex quaternion and complex octonion) as the Furey model generate the fixed spacetime dimension number for the observable universe with the fixed 4-dimensional spacetime (4D) standard model particles and the oscillating spacetime dimension number for the oscillating universes (hidden or dark energy) with the oscillation between 11D and 11D through 10D and between 10D and 10D through 4D. 11D has the lowest rest mass, the highest speed of light, and the highest vacuum energy, while 4D has the highest rest mass, the lowest (observed) speed of light, and zero vacuum energy. In the cyclic universes model, the universes start with the positive-energy and the negative-energy 11D membrane-antimembrane dual universes from the zero-energy inter-universal void, and are followed by the transformation of the 11D membrane-antimembrane dual universes into the 10D string-antistring dual universes and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-energy 10D universe, the positive-energy external gravity, the negative-energy 10D universe, and the negative-energy external gravity. Under the fixed spacetime dimension number, the positive-energy 10D universe is transformed into 4D standard model particles through the inflation and the Big Bang. Dark matter is the right-handed neutrino, exactly five times of baryonic matter in total mass in the universe. Under the oscillating spacetime dimension number, the other three universes oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy (the maximum dark energy = 3/4 = 75%) when D = 4. Eventually, all four universes return to the 10D universes. 展开更多
关键词 CYCLIC UNIVERSES MODEL Division Algebras Furey COMPLEX Quaternion COMPLEX OCTONION DARK Energy DARK Matter Standard MODEL Gravity
下载PDF
The Reversible Cyclic Universe in the Reversible Multiverse and the Reversible String Theory
18
作者 ding-yu chung 《Journal of Modern Physics》 2015年第9期1249-1260,共12页
The paper posits that the multiverse is reversible, so all universes in the multiverse are reversible cyclic universes which have the inexhaustible resources of space-time to expand. The collision of expanding univers... The paper posits that the multiverse is reversible, so all universes in the multiverse are reversible cyclic universes which have the inexhaustible resources of space-time to expand. The collision of expanding universes is permanently irreversible, forbidden in the reversible multiverse, so every universe is surrounded by the zero-energy interuniversal void as the permanent gap among universes to keep universes apart. A zero-sum energy dual universe of positive energy universe and negative energy universe can be created in the interuniversal void, and the new dual universe is again surrounded by the interuniversal void. This paper also posits the reversible string theory with oscillating space-time dimension number oscillating between 11D (space-time dimension) and 4D without the conventional compactization of string. Dimension number decreases with decreasing speed of light, decreasing vacuum energy, and increasing rest mass. The 4D and the 11D have zero and the highest vacuum energies, respectively. The universes in the reversible multiverse oscillate reversibly between high and low dimension numbers. Under symmetry breaking as in our universe, the positive energy universe as our observed universe absorbed the interuniversal void, while the negative energy universe did not. The interuniversal void has zero vacuum energy, so the absorption of the interuniversal void by the positive energy universe forced the positive energy 10D universe with high vacuum energy to be transformed into the positive energy 4D universe with zero vacuum energy, resulting in the inflation followed by the Big Bang. The negative energy universe undergoes dimension number oscillation between 4D and 10D dimension by dimension. The negative energy >4D universe is hidden, and the negative energy 4D universe appears as dark energy. The calculated percentages of dark energy, dark matter, and baryonic matter and the calculated time for dark energy to start are in good agreements with the observed values. 展开更多
关键词 CYCLIC UNIVERSE MULTIVERSE Interuniversal Void String Theory Cosmology Big Bang INFLATION DARK Energy DARK Matter
下载PDF
The Big Bang Started by the Creation of the Reverse Higgs Field
19
作者 ding-yu chung 《Journal of Modern Physics》 2015年第9期1189-1194,共6页
This paper posits that the Big Bang was started by the creation of the reverse Higgs field as the massless particle-generating field derived from the absorption of the interuniversal void outside of the universe in th... This paper posits that the Big Bang was started by the creation of the reverse Higgs field as the massless particle-generating field derived from the absorption of the interuniversal void outside of the universe in the reversible multiverse. The interuniversal void surrounding every universe is to prevent the collision of expanding universes which have the inexhaustible resources of space-time to expand. The collision of expanding universes is permanently irreversible, forbidden in the reversible multiverse. To prevent the collision, the interuniversal void detaches the incoming mass-energy in the interuniversal void to keep expanding universes apart without collision. Inside of the universe, the absorbed interuniversal void with the property of the detachment of mass-energy was transformed into the reverse Higgs field that detached adjacent mass-energy in the universe, resulting in the conversion of rest mass (massive particles) into kinetic energy (massless particles) starting the Big Bang. During the Big Bang, the creation of the reverse Higgs field was followed by the conversion of massless particles except photons into massive particles through the absorption of the Higgs bosons. The absorption of the interuniversal void with zero vacuum energy also started the inflation by converting the high vacuum energy universe into the zero vacuum energy universe. The inflation followed by the Big Bang is a part of the reversible cyclic universe which explains the four force fields (the strong force, gravity, the electromagnetic force, and the weak force) and dark energy. During the Big Bang, the Higgs field and the reverse Higgs field produced the digital space structure consisting of attachment space (the Higgs field) denoted as 1 and detachment space (the reverse Higgs field) denoted as 0. 展开更多
关键词 Big Bang HIGGS FIELD REVERSE HIGGS FIELD INFLATION Cyclic Universe MULTIVERSE Digital Space Structure Dark Energy
下载PDF
The Periodic Table of Elementary Particles Based on String Theory
20
作者 ding-yu chung 《Journal of Modern Physics》 2014年第14期1234-1243,共10页
In this paper, all elementary particles (leptons, quarks, gauge bosons, and the Higgs boson) can be placed in the periodic table of elementary particles based on string theory with oscillating spacetime dimension numb... In this paper, all elementary particles (leptons, quarks, gauge bosons, and the Higgs boson) can be placed in the periodic table of elementary particles based on string theory with oscillating spacetime dimension number, instead of conventional string theory with fixed space-time dimension number. Dimension number oscillates between 11D and 10D and between 10D and 4D reversibly. The oscillation of space-time dimension number (D) is accompanied by mass dimension number (d) to represent mass. Space-time dimension number decreases with increasing mass dimension number, decreasing speed of light and increasing rest mass. 4D particle originally is 4D10d particle, and has the lowest speed of light and the highest rest mass. With the same energy, the relation between adjacent mass dimensions is Md-1=Mdαd2, where M is rest mass, d is mass dimension number, and α is the fine structure constant. According to the proposed cosmology, the non-gravitational 4D10d particles were sliced into 4D4d core particles surrounded by 6 separated mass dimensions as the 6 dimensional orbitals constituting the non-gravitational forces (electromagnetism, strong, and weak). The combination of the 6 dimensional orbitals and the gravitational 4D10d particle resulted in the 7 dimensional orbitals. As the periodic table of elements based on the atomic orbitals, the periodic table of elementary particles is based on the combination of the two asymmetrical sets of the 7 dimensional orbitals. One set as the principal dimensional orbitals is mainly for leptons and gauge bosons, and another set as the auxiliary orbitals is mainly for individual quarks. The calculated constituent masses of leptons, quarks, gauge bosons, and the Higgs boson are in good agreement with the observed values. For examples, the calculated mass of top quark is 176.5 GeV in good agreement with the observed 173.34 GeV, and the calculated average mass of the Higgs boson is 128.8 GeV in good agreements with the observed 125 or 126 GeV. 展开更多
关键词 The Periodic Table of ELEMENTARY Particles STRING Theory HIGGS BOSON LEPTON QUARK Gauge BOSON
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部