期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
l_(p)(0
1
作者 彭定涛 张弦 易守鱼 《中国科学:数学》 CSCD 北大核心 2024年第8期1123-1140,共18页
本文研究一类低秩矩阵优化问题,其中惩罚项为目标矩阵奇异值的l_(p)(0<p<1)正则函数.基于半阈值函数在稀疏/低秩恢复问题中的良好性能,本文提出奇异值半阈值(singular value half thresholding,SVHT)算法来求解l_(p)正则矩阵优化... 本文研究一类低秩矩阵优化问题,其中惩罚项为目标矩阵奇异值的l_(p)(0<p<1)正则函数.基于半阈值函数在稀疏/低秩恢复问题中的良好性能,本文提出奇异值半阈值(singular value half thresholding,SVHT)算法来求解l_(p)正则矩阵优化问题.SVHT算法的主要迭代利用了子问题的闭式解,但与现有算法不同,其本质上是对目标函数在当前点进行局部1/2近似,而不是局部线性或局部二次近似.通过构造目标函数的Lipschitz和非Lipschitz近似函数,本文证明了SVHT算法生成序列的任意聚点都是问题的一阶稳定点.在数值实验中,利用模拟数据和实际图像数据的低秩矩阵补全问题对SVHT算法进行测试.大量的数值结果表明,SVHT算法对低秩矩阵优化问题在速度、精度和鲁棒性等方面都表现优异. 展开更多
关键词 低秩矩阵优化问题 矩阵l_(p)正则 闭式解 奇异值半阈值算法 一阶稳定点
原文传递
Global optimality condition and fixed point continuation algorithm for non-Lipschitz ?_p regularized matrix minimization 被引量:1
2
作者 dingtao peng Naihua Xiu Jian Yu 《Science China Mathematics》 SCIE CSCD 2018年第6期1139-1152,共14页
Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identific... Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identification and machine learning. In this paper, the non-Lipschitz ?_p(0 < p < 1) regularized matrix minimization problem is studied. A global necessary optimality condition for this non-Lipschitz optimization problem is firstly obtained, specifically, the global optimal solutions for the problem are fixed points of the so-called p-thresholding operator which is matrix-valued and set-valued. Then a fixed point iterative scheme for the non-Lipschitz model is proposed, and the convergence analysis is also addressed in detail. Moreover,some acceleration techniques are adopted to improve the performance of this algorithm. The effectiveness of the proposed p-thresholding fixed point continuation(p-FPC) algorithm is demonstrated by numerical experiments on randomly generated and real matrix completion problems. 展开更多
关键词 lp regularized matrix minimization matrix completion problem p-thresholding operator globaloptimality condition fixed point continuation algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部