期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Crystal plasticity finite element simulations on extruded Mg-10Gd rod with texture gradient
1
作者 Jaeseong Lee dirk steglich Youngung Jeong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3409-3430,共22页
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio... The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin. 展开更多
关键词 Crystal plasticity TEXTURE Finite element C-ring Three-point bending
下载PDF
Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet 被引量:4
2
作者 Weiqin Tang Jeong Yeon Lee +4 位作者 Huamiao Wang dirk steglich Dayong Li Yinghong Peng Peidong Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期927-936,共10页
Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their... Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets. 展开更多
关键词 INELASTICITY Magnesium alloy RARE-EARTH Crystal plasticity TWINNING Detwinning
下载PDF
Atomistic simulation of tension deformation behavior in magnesium single crystal 被引量:1
3
作者 Yafang GUO Yuesheng WANG +1 位作者 Honggang QI dirk steglich 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第5期370-380,共11页
The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear band... The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear bands are found to be the main deformation mechanisms. In particular, the {102} tension twins with the reorientation angle of about 90 °are observed in the simulations. The mechanisms of {102} twinning are illustrated by the simulated motion of atoms. Moreover, grain nucleation and growth are found to be accompanied with the {102} twinning. At temperatures above 450 K, the twin frequency decreases with increasing temperature. The {102} extension twin almost disappears at the temperature of 570 K. The non-basal slip plays an important role on the tensile deformation in magnesium single crystal at high temperatures. 展开更多
关键词 Atomistic simulations MAGNESIUM TWINNING c-axis tension
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部