At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity...At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff.展开更多
Non-communicable diseases(NCDs),including cardiovascular diseases,cancer,metabolic diseases,and skeletal diseases,pose significant challenges to public health worldwide.The complex pathogenesis of these diseases is cl...Non-communicable diseases(NCDs),including cardiovascular diseases,cancer,metabolic diseases,and skeletal diseases,pose significant challenges to public health worldwide.The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage.Nuclear factor erythroid 2-related factor 2(Nrf2),a critical transcription factor,plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury.Therefore,Nrf2-targeting therapies hold promise for preventing and treating NCDs.Quercetin(Que)is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties.It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation.Que modulates mitochondrial function,apoptosis,autophagy,and cell damage biomarkers to regulate oxidative stress and inflammation,highlighting its efficacy as a therapeutic agent against NCDs.Here,we discussed,for the first time,the close association between NCD pathogenesis and the Nrf2 signaling pathway,involved in neurodegenerative diseases(NDDs),cardiovascular disease,cancers,organ damage,and bone damage.Furthermore,we reviewed the availability,pharmacokinetics,pharmaceutics,and therapeutic applications of Que in treating NCDs.In addition,we focused on the challenges and prospects for its clinical use.Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.展开更多
Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water sh...Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water shortages and the overuse of fertilizers.The field experiment had twelve treatments and a control(CK)trial including two irrigation amounts(I1,100%ETm;I2,60%ETm;where ETm is the maximum evapotranspiration),two nitrogen applications(N1,360 kg ha^(−1);N2,120 kg ha^(−1))and three biochar application levels(B1,60 t ha^(−1);B_(2),30 t ha^(−1)and B3,0 t ha^(−1)).A multi-objective synergistic irrigation-nitrogen-biochar application system for improving tomato yield,quality,water and nitrogen use efficiency,and greenhouse emissions was developed by integrating the techniques of experimentation and optimization.First,a coupled irrigation-nitrogen-biochar plot experiment was arranged.Then,tomato yield and fruit quality parameters were determined experimentally to establish the response relationships between irrigation-nitrogen-biochar dosage and yield,comprehensive quality of tomatoes(TCQ),irrigation water use efficiency(IWUE),partial factor productivity of nitrogen(PFPN),and net greenhouse gas emissions(NGE).Finally,a multi-objective dynamic optimization regulation model of irrigation-nitrogen-biochar resource allocation at different growth stages of tomato was constructed which was solved by the fuzzy programming method.The results showed that the application of irrigation and nitrogen to biochar promoted increase in yield,IWUE and PFPN,while it had an inhibitory effect on NGE.In addition,the optimal allocation amounts of water and fertilizer were different under different scenarios.The yield of the S1 scenario increased by 8.31%compared to the B_(1)I_(1)N_(2) treatment;TCQ of the S2 scenario increased by 5.14%compared to the B_(2)I_(2)N_(1) treatment;IWUE of the S3 scenario increased by 10.01%compared to the B1I2N2 treatment;PFPN of the S4 scenario increased by 9.35%compared to the B_(1)I_(1)N_(2) treatment;and NGE of the S5 scenario decreased by 11.23%compared to the B_(2)I1N1 treatment.The optimization model showed that the coordination of multiple objectives considering yield,TCQ,IWUE,PFPN,and NGE increased on average from 4.44 to 69.02%compared to each treatment when the irrigation-nitrogen-biochar dosage was 205.18 mm,186 kg ha^(−1)and 43.31 t ha^(−1),respectively.This study provides a guiding basis for the sustainable management of water and fertilizer in greenhouse tomato production under drip irrigation fertilization conditions.展开更多
The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environmen...The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.展开更多
Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental compositi...Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.展开更多
This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on asses...This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side.展开更多
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man...Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.展开更多
Background:Melatonin,a natural hormone secreted by the pineal gland,has been reported to exhibit antitumor properties through diverse mechanisms of action.However,the oncostatic function of melatonin on esophageal squ...Background:Melatonin,a natural hormone secreted by the pineal gland,has been reported to exhibit antitumor properties through diverse mechanisms of action.However,the oncostatic function of melatonin on esophageal squamous cell carcinoma(ESCC) remains elusive.This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells.Methods:ESCC cell lines treated with or without melatonin were used in this study.In vitro colony formation and 5-Ethynyl-2’-deoxyuridine(EdU) incorporation assays,and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells.RNA-seq,qPCR,Western blotting,recombinant lentivirus-mediated target gene overexpression or knockdown,plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth.IHC staining on ESCC tissue microarray and further survival analyses were performed to explore the relationship between target genes’ expression and prognosis of ESCC.Results:Melatonin treatment dose-dependently inhibited the proliferative ability and the expression of histone deacetylase 7(HDAC7),c-Myc and ubiquitin-specific peptidase 10(USP10) in ESCC cells(P<0.05).The expressions of HDAC7,c-Myc and USP10 in tumors were significantly higher than the paired normal tissues from 148 ESCC patients(P<0.001).Then,the Kaplan-Meier survival analysis suggested that ESCC patients with high HDAC7,c-Myc or USP10levels predicted worse overall survival(log-rank P<0.001).Co-IP and Western blotting further revealed that HDAC7physically deacetylated and activated β-catenin thus promoting downstream target c-Myc gene transcription.Notably,our mechanistic study validated that HDAC7/β-catenin/c-Myc could form the positive feedback loop to enhance ESCC cell growth,and USP10 could deubiquitinate and stabilize HDAC7 protein in the ESCC cells.Additionally,we verified that inhibition of the HDAC7/β-catenin/c-Myc axis and USP10/HDAC7 pathway mediated the anti-proliferative action of melatonin on ESCC cells.Conclusions:Our findings elucidate that melatonin mitigates the HDAC7/β-catenin/c-Myc positive feedback loop and inhibits the USP10-maintained HDAC7 protein stability thus suppressing ESCC cell growth,and provides the reference for identifying biomarkers and therapeutic targets for ESCC.展开更多
The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear...The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process.展开更多
BACKGROUND Surgical site infections(SSIs) are the commonest healthcare-associated infection. In addition to increasing mortality, it also lengthens the hospital stay and raises healthcare expenses. SSIs are challengin...BACKGROUND Surgical site infections(SSIs) are the commonest healthcare-associated infection. In addition to increasing mortality, it also lengthens the hospital stay and raises healthcare expenses. SSIs are challenging to predict, with most models having poor predictability. Therefore, we developed a prediction model for SSI after elective abdominal surgery by identifying risk factors.AIM To analyse the data on inpatients undergoing elective abdominal surgery to identify risk factors and develop predictive models that will help clinicians assess patients preoperatively.METHODS We retrospectively analysed the inpatient records of Shaanxi Provincial People’s Hospital from January 1, 2018 to January 1, 2021. We included the demographic data of the patients and their haematological test results in our analysis. The attending physicians provided the Nutritional Risk Screening 2002(NRS 2002)scores. The surgeons and anaesthesiologists manually calculated the National Nosocomial Infections Surveillance(NNIS) scores. Inpatient SSI risk factors were evaluated using univariate analysis and multivariate logistic regression. Nomograms were used in the predictive models. The receiver operating characteristic and area under the curve values were used to measure the specificity and accuracy of the model.RESULTS A total of 3018 patients met the inclusion criteria. The surgical sites included the uterus(42.2%), the liver(27.6%), the gastrointestinal tract(19.1%), the appendix(5.9%), the kidney(3.7%), and the groin area(1.4%). SSI occurred in 5% of the patients(n = 150). The risk factors associated with SSI were as follows: Age;gender;marital status;place of residence;history of diabetes;surgical season;surgical site;NRS 2002 score;preoperative white blood cell, procalcitonin(PCT), albumin, and low-density lipoprotein cholesterol(LDL) levels;preoperative antibiotic use;anaesthesia method;incision grade;NNIS score;intraoperative blood loss;intraoperative drainage tube placement;surgical operation items. Multivariate logistic regression revealed the following independent risk factors: A history of diabetes [odds ratio(OR) = 5.698, 95% confidence interval(CI): 3.305-9.825, P = 0.001], antibiotic use(OR = 14.977, 95%CI: 2.865-78.299, P = 0.001), an NRS 2002 score of ≥ 3(OR = 2.426, 95%CI: 1.199-4.909, P = 0.014), general anaesthesia(OR = 3.334, 95%CI: 1.134-9.806, P = 0.029), an NNIS score of ≥ 2(OR = 2.362, 95%CI: 1.019-5.476, P = 0.045), PCT ≥ 0.05 μg/L(OR = 1.687, 95%CI: 1.056-2.695, P = 0.029), LDL < 3.37 mmol/L(OR = 1.719, 95%CI: 1.039-2.842, P = 0.035), intraoperative blood loss ≥ 200 mL(OR = 29.026, 95%CI: 13.751-61.266, P < 0.001), surgical season(P < 0.05), surgical site(P < 0.05), and incision grade I or Ⅲ(P < 0.05). The overall area under the receiver operating characteristic curve of the predictive model was 0.926, which is significantly higher than the NNIS score(0.662).CONCLUSION The patient’s condition and haematological test indicators form the bases of our prediction model. It is a novel, efficient, and highly accurate predictive model for preventing postoperative SSI, thereby improving the prognosis in patients undergoing abdominal surgery.展开更多
Rho GTPases are essential regulators of the actin cytoskeleton.They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics,development,proliferation,survival,an...Rho GTPases are essential regulators of the actin cytoskeleton.They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics,development,proliferation,survival,and regeneration.During the development of cochlear hair cells,Rho GTPases are activated by various extracellular signals through membrane receptors to further stimulate multiple downstream effectors.Specifically,RhoA,Cdc42,and Rac1,members of the classical subfamily of the Rho GTPase family,regulate the development and maintenance of cilia by inducing the polymerization of actin monomers and stabilizing actin filaments.In addition,they also regulate the normal morphology orientation of ciliary bundles in auditory hair cells,which is an important element of cell polarity regulation.Moreover,the actin-related pathways mediated by RhoA,Cdc42,and Rac1 also play a role in the motility of outer hair cells,indicating that the function of Rho GTPases is crucial in the highly polar auditory sensory system.In this review,we focus on the expression of RhoA,Cdc42,and Rac1 in cochlear hair cells and how these small molecules participate in ciliary bundle morphogenesis and cochlear hair cell movement.We also discuss the progress of current research investigating the use of these small molecules as drug targets for deafness treatment.展开更多
Adenylate cyclase(AC)is the key enzyme that catalyzes the formation of cAMP from ATP.In this study,we discovered two novel class Ⅲ ACs with a halophilic property from Thermobifida halotolerans DSM 44931(ThAC)and Halo...Adenylate cyclase(AC)is the key enzyme that catalyzes the formation of cAMP from ATP.In this study,we discovered two novel class Ⅲ ACs with a halophilic property from Thermobifida halotolerans DSM 44931(ThAC)and Haloactinopolyspora alba DSM 45211(HaAC),respectively.The recombinant ThAC and HaAC were expressed in Escherichia coli with molecular weights of 36.1 and 36.0 kDa respectively.The presence of 2500 and 2200 mmolL^(-1)1 NaCl significantly enhanced the enzyme activities of ThAC and HaAC,with 22-fold and 7.4-fold higher activities compared to those without NaCl,respectively.Several divalent metal ions were found to activate the recombinant ACs to different extents,and the optimal metal ion was Mg^(2+)for both ThAC and HaAC with concentrations of 80 mmol·L^(-1) and 40 mmol·L^(-1) respectively.Purified ThAC and HaAC had the optimal specific activities((4.59±0.35)×10^(4) and(7.76±0.52)×10^(4) U·mg^(-1))and catalytic efficiency(4.47 and 5.30 L·mmol^(-1)·s^(-1))at 45℃ and 40℃ respectively,while the optimum pH of both two recombinant ACs was 10.0.This is the first report of the halophilic Class III ACs,which could make new contributions to explore and study ACs for further associated investigations.展开更多
Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is ...Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO_(3) solution is found to contain Fe2O_(3), SiO_(2), Al2O_(3), and AlO(OH). The Fe2O_(3) transforms into Fe3O4 with weakened oxidizability of the NO_(3)– at an elevated pH, whereas an alkaline NaNO_(3) solution leads to the production of Al2O_(3), AlO(OH), and SiO_(2). Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.展开更多
Omnidirectional photodetectors attract enormous attention due to their prominent roles in optical tracking systems and omnidirectional cameras.However,it is still a challenge for the construction of high-performance o...Omnidirectional photodetectors attract enormous attention due to their prominent roles in optical tracking systems and omnidirectional cameras.However,it is still a challenge for the construction of high-performance omnidirectional photodetectors where the incident light can be effectively absorbed in multiple directions and the photo-generated carriers can be effectively collected.Here,a high-performance omnidirectional self-powered photodetector based on the CsSnBr_(3)/indium tin oxide(ITO)heterostructure film was designed and demonstrated.The as-fabricated photodetector exhibited an excellent self-powered photodetection performance,showing responsivity and detectivity up to 35.1 mA/W and 1.82×10^(10) Jones,respectively,along with the smart rise/decay response time of 4 ms/9 ms.Benefitting from the excellent photoelectric properties of the CsSnBr_(3) film as well as the ability of the CsSnBr_(3)/ITO heterostructure to efficiently separate and collect photo-generated carriers,the as-fabricated photodetector also exhibited an excellent omnidirectional self-powered photodetection performance.All the results have certified that this work finds an efficient way to realize high-performance omnidirectional self-powered photodetectors.展开更多
BACKGROUND Both lung cancer and cardiometabolic diseases are leading causes of death in China,and they share some common risk factors.However,the prevalence and long-term effect of pre-existing cardiometabolic comorbi...BACKGROUND Both lung cancer and cardiometabolic diseases are leading causes of death in China,and they share some common risk factors.However,the prevalence and long-term effect of pre-existing cardiometabolic comorbidities(CMCs)on the survival of middle-aged and elderly lung cancer patients are still not clear.METHODS We consecutively recruited 3477 non-small cell lung cancer(NSCLC)patients between January 2011 and December 2018 from four cancer specialty hospitals in China.Univariable and multivariable adjusted Cox proportional hazard models were conducted to evaluate the risk factors associated with mortality.Hazard ratio(HR)for mortality and corresponding 95%CI were calculated.RESULTS The prevalence of CMCs was 30.0%in middle-aged NSCLC patients and 45.5%in elderly NSCLC patients.Log-rank analysis presented statistically significant differences in median survival time between patients with CMCs and without CMCs in both the middle-aged group(21.0 months vs.32.0 months,P<0.01)and the elderly group(13.0 months vs.17.0 months,P=0.01).Heart failure(HR=1.754,95%CI:1.436–2.144,P<0.001)and venous thrombus embolism(HR=2.196,95%CI:1.691–2.853,P<0.001)were independent risk factors for the survival of middle-aged NSCLC patients,while heart failure(HR=1.709,95%CI:1.371–2.130,P<0.001)continued to decrease overall survival in the elderly group.Hyperlipidemia may be a protective factor for survival in middle-aged group(HR=0.741,95%CI:0.566–0.971,P=0.030).CONCLUSIONS Our findings demonstrate for the first time the prevalence and prognostic value of pre-existing CMCs in Chinese middle-aged and elderly NSCLC patients.展开更多
This study was conducted to explore the construction of scaffolding teaching mode of Traditional Chinese Medicine under the background of"Internet+".The students of Grade 2018 majoring in traditional Chinese...This study was conducted to explore the construction of scaffolding teaching mode of Traditional Chinese Medicine under the background of"Internet+".The students of Grade 2018 majoring in traditional Chinese medicine were selected as the object,and some chapters of the textbook of traditional Chinese medicine were selected and taught by the traditional teaching mode while interspersing the scaffolding teaching mode,in order to help the implementation of the scaffolding teaching model.We adopted the methods of setting up situational scaffolding,question scaffolding and guide scaffolding to carry out relevant teaching contents.The scaffolding instruction model has a good degree of participation,and to a certain extent,it stimulates students'self-consciousness and enthusiasm,and improves their ability of analyzing and solving problems and their spirit of innovation.展开更多
基金supported by National Natural Science Foundation of China(52074321)Natural Science Foundation of Beijing Municipality,China(3192026)。
文摘At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff.
基金funded by the National Natural Science Foundation of China(Grant Nos.:81503272,81630101,81891012)the Application Foundation Research Project of Sichuan Provincial Department of Science and Technology,China(Grant No.:2017JY0187)the Xinglin Scholar Research Premotion Project of Chengdu University of Traditional Chinese Medicine,China(Grant No.:2018016).
文摘Non-communicable diseases(NCDs),including cardiovascular diseases,cancer,metabolic diseases,and skeletal diseases,pose significant challenges to public health worldwide.The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage.Nuclear factor erythroid 2-related factor 2(Nrf2),a critical transcription factor,plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury.Therefore,Nrf2-targeting therapies hold promise for preventing and treating NCDs.Quercetin(Que)is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties.It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation.Que modulates mitochondrial function,apoptosis,autophagy,and cell damage biomarkers to regulate oxidative stress and inflammation,highlighting its efficacy as a therapeutic agent against NCDs.Here,we discussed,for the first time,the close association between NCD pathogenesis and the Nrf2 signaling pathway,involved in neurodegenerative diseases(NDDs),cardiovascular disease,cancers,organ damage,and bone damage.Furthermore,we reviewed the availability,pharmacokinetics,pharmaceutics,and therapeutic applications of Que in treating NCDs.In addition,we focused on the challenges and prospects for its clinical use.Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
基金supported by the National Natural Science Foundation of China(52222902 and 52079029)。
文摘Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water shortages and the overuse of fertilizers.The field experiment had twelve treatments and a control(CK)trial including two irrigation amounts(I1,100%ETm;I2,60%ETm;where ETm is the maximum evapotranspiration),two nitrogen applications(N1,360 kg ha^(−1);N2,120 kg ha^(−1))and three biochar application levels(B1,60 t ha^(−1);B_(2),30 t ha^(−1)and B3,0 t ha^(−1)).A multi-objective synergistic irrigation-nitrogen-biochar application system for improving tomato yield,quality,water and nitrogen use efficiency,and greenhouse emissions was developed by integrating the techniques of experimentation and optimization.First,a coupled irrigation-nitrogen-biochar plot experiment was arranged.Then,tomato yield and fruit quality parameters were determined experimentally to establish the response relationships between irrigation-nitrogen-biochar dosage and yield,comprehensive quality of tomatoes(TCQ),irrigation water use efficiency(IWUE),partial factor productivity of nitrogen(PFPN),and net greenhouse gas emissions(NGE).Finally,a multi-objective dynamic optimization regulation model of irrigation-nitrogen-biochar resource allocation at different growth stages of tomato was constructed which was solved by the fuzzy programming method.The results showed that the application of irrigation and nitrogen to biochar promoted increase in yield,IWUE and PFPN,while it had an inhibitory effect on NGE.In addition,the optimal allocation amounts of water and fertilizer were different under different scenarios.The yield of the S1 scenario increased by 8.31%compared to the B_(1)I_(1)N_(2) treatment;TCQ of the S2 scenario increased by 5.14%compared to the B_(2)I_(2)N_(1) treatment;IWUE of the S3 scenario increased by 10.01%compared to the B1I2N2 treatment;PFPN of the S4 scenario increased by 9.35%compared to the B_(1)I_(1)N_(2) treatment;and NGE of the S5 scenario decreased by 11.23%compared to the B_(2)I1N1 treatment.The optimization model showed that the coordination of multiple objectives considering yield,TCQ,IWUE,PFPN,and NGE increased on average from 4.44 to 69.02%compared to each treatment when the irrigation-nitrogen-biochar dosage was 205.18 mm,186 kg ha^(−1)and 43.31 t ha^(−1),respectively.This study provides a guiding basis for the sustainable management of water and fertilizer in greenhouse tomato production under drip irrigation fertilization conditions.
基金Project supported in part by the National Key Research and Development Program of China(Grant Nos.2023YFA1608201 and 2023YFF0722301)the National Natural Science Foundation of China(Grant Nos.11925304,12020101002,12333013,12273119,and 12103093)supported by grant from the Russian Science Foundation(Grant No.23-7900019)。
文摘The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.
基金This work was supported by the National Natural Science Foundation of China(No.12035017)Youth Innovation Promotion Association CAS(No.2023014)Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515010360 and 2022B1515120032).
文摘Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.
基金National Natural Science Foundation of China(52076110,52106160)Jiangsu Provincial Natural Science Foundation of China(BK20200490,BK20220955)Fundamental Research Funds for the Central Universities(30923010208 and 30920031103).
文摘This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side.
文摘Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.
基金supported by the National Natural Science Foundation of China (82103508, 81871866, 82173252, 81672996)the Natural Science Foundation of Shaanxi Province (2022JQ?862)。
文摘Background:Melatonin,a natural hormone secreted by the pineal gland,has been reported to exhibit antitumor properties through diverse mechanisms of action.However,the oncostatic function of melatonin on esophageal squamous cell carcinoma(ESCC) remains elusive.This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells.Methods:ESCC cell lines treated with or without melatonin were used in this study.In vitro colony formation and 5-Ethynyl-2’-deoxyuridine(EdU) incorporation assays,and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells.RNA-seq,qPCR,Western blotting,recombinant lentivirus-mediated target gene overexpression or knockdown,plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth.IHC staining on ESCC tissue microarray and further survival analyses were performed to explore the relationship between target genes’ expression and prognosis of ESCC.Results:Melatonin treatment dose-dependently inhibited the proliferative ability and the expression of histone deacetylase 7(HDAC7),c-Myc and ubiquitin-specific peptidase 10(USP10) in ESCC cells(P<0.05).The expressions of HDAC7,c-Myc and USP10 in tumors were significantly higher than the paired normal tissues from 148 ESCC patients(P<0.001).Then,the Kaplan-Meier survival analysis suggested that ESCC patients with high HDAC7,c-Myc or USP10levels predicted worse overall survival(log-rank P<0.001).Co-IP and Western blotting further revealed that HDAC7physically deacetylated and activated β-catenin thus promoting downstream target c-Myc gene transcription.Notably,our mechanistic study validated that HDAC7/β-catenin/c-Myc could form the positive feedback loop to enhance ESCC cell growth,and USP10 could deubiquitinate and stabilize HDAC7 protein in the ESCC cells.Additionally,we verified that inhibition of the HDAC7/β-catenin/c-Myc axis and USP10/HDAC7 pathway mediated the anti-proliferative action of melatonin on ESCC cells.Conclusions:Our findings elucidate that melatonin mitigates the HDAC7/β-catenin/c-Myc positive feedback loop and inhibits the USP10-maintained HDAC7 protein stability thus suppressing ESCC cell growth,and provides the reference for identifying biomarkers and therapeutic targets for ESCC.
基金financial support from the National Key Research and Development Programme (2018YFC1801901)the National Natural Science Foundation of China (21808115, 22108309, 52172093)+1 种基金the Key Research and Development Project (Major Project of Scientific and Technological Innovation) of Shandong Province (2020CXGC010308)the Taishan Scholar Program of Shandong (ts20190919)。
文摘The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process.
基金Supported by Key Research and Development Program of Shaanxi,No.2020GXLH-Y-019 and 2022KXJ-141Innovation Capability Support Program of Shaanxi,No.2019GHJD-14 and 2021TD-40+1 种基金Science and Technology Talent Support Program of Shaanxi Provincial People's Hospital,No.2021LJ-052023 Natural Science Basic Research Foundation of Shaanxi Province,No.2023-JC-YB-739.
文摘BACKGROUND Surgical site infections(SSIs) are the commonest healthcare-associated infection. In addition to increasing mortality, it also lengthens the hospital stay and raises healthcare expenses. SSIs are challenging to predict, with most models having poor predictability. Therefore, we developed a prediction model for SSI after elective abdominal surgery by identifying risk factors.AIM To analyse the data on inpatients undergoing elective abdominal surgery to identify risk factors and develop predictive models that will help clinicians assess patients preoperatively.METHODS We retrospectively analysed the inpatient records of Shaanxi Provincial People’s Hospital from January 1, 2018 to January 1, 2021. We included the demographic data of the patients and their haematological test results in our analysis. The attending physicians provided the Nutritional Risk Screening 2002(NRS 2002)scores. The surgeons and anaesthesiologists manually calculated the National Nosocomial Infections Surveillance(NNIS) scores. Inpatient SSI risk factors were evaluated using univariate analysis and multivariate logistic regression. Nomograms were used in the predictive models. The receiver operating characteristic and area under the curve values were used to measure the specificity and accuracy of the model.RESULTS A total of 3018 patients met the inclusion criteria. The surgical sites included the uterus(42.2%), the liver(27.6%), the gastrointestinal tract(19.1%), the appendix(5.9%), the kidney(3.7%), and the groin area(1.4%). SSI occurred in 5% of the patients(n = 150). The risk factors associated with SSI were as follows: Age;gender;marital status;place of residence;history of diabetes;surgical season;surgical site;NRS 2002 score;preoperative white blood cell, procalcitonin(PCT), albumin, and low-density lipoprotein cholesterol(LDL) levels;preoperative antibiotic use;anaesthesia method;incision grade;NNIS score;intraoperative blood loss;intraoperative drainage tube placement;surgical operation items. Multivariate logistic regression revealed the following independent risk factors: A history of diabetes [odds ratio(OR) = 5.698, 95% confidence interval(CI): 3.305-9.825, P = 0.001], antibiotic use(OR = 14.977, 95%CI: 2.865-78.299, P = 0.001), an NRS 2002 score of ≥ 3(OR = 2.426, 95%CI: 1.199-4.909, P = 0.014), general anaesthesia(OR = 3.334, 95%CI: 1.134-9.806, P = 0.029), an NNIS score of ≥ 2(OR = 2.362, 95%CI: 1.019-5.476, P = 0.045), PCT ≥ 0.05 μg/L(OR = 1.687, 95%CI: 1.056-2.695, P = 0.029), LDL < 3.37 mmol/L(OR = 1.719, 95%CI: 1.039-2.842, P = 0.035), intraoperative blood loss ≥ 200 mL(OR = 29.026, 95%CI: 13.751-61.266, P < 0.001), surgical season(P < 0.05), surgical site(P < 0.05), and incision grade I or Ⅲ(P < 0.05). The overall area under the receiver operating characteristic curve of the predictive model was 0.926, which is significantly higher than the NNIS score(0.662).CONCLUSION The patient’s condition and haematological test indicators form the bases of our prediction model. It is a novel, efficient, and highly accurate predictive model for preventing postoperative SSI, thereby improving the prognosis in patients undergoing abdominal surgery.
基金supported by the Natural Science Foundation of Jiangsu Province,No.BK20221377(to JG)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,No.22KJB180023(to JG)。
文摘Rho GTPases are essential regulators of the actin cytoskeleton.They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics,development,proliferation,survival,and regeneration.During the development of cochlear hair cells,Rho GTPases are activated by various extracellular signals through membrane receptors to further stimulate multiple downstream effectors.Specifically,RhoA,Cdc42,and Rac1,members of the classical subfamily of the Rho GTPase family,regulate the development and maintenance of cilia by inducing the polymerization of actin monomers and stabilizing actin filaments.In addition,they also regulate the normal morphology orientation of ciliary bundles in auditory hair cells,which is an important element of cell polarity regulation.Moreover,the actin-related pathways mediated by RhoA,Cdc42,and Rac1 also play a role in the motility of outer hair cells,indicating that the function of Rho GTPases is crucial in the highly polar auditory sensory system.In this review,we focus on the expression of RhoA,Cdc42,and Rac1 in cochlear hair cells and how these small molecules participate in ciliary bundle morphogenesis and cochlear hair cell movement.We also discuss the progress of current research investigating the use of these small molecules as drug targets for deafness treatment.
基金supported by Jiangsu Province Natural Science Foundation for Distinguished Young Scholars(BK20190035)Jiangsu Government Scholarship for Overseas Studies(JS-2019-053)+6 种基金Key Research&Development plan of Jiangsu Province(BE2019001)the National Natural Science Foundation of China(2217080044 and 22008119)the Natural Science Foundation of Jiangsu Province(BK20202002)the National Key Research and Development Program of China(2021YFC2101204)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_14R28)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.
文摘Adenylate cyclase(AC)is the key enzyme that catalyzes the formation of cAMP from ATP.In this study,we discovered two novel class Ⅲ ACs with a halophilic property from Thermobifida halotolerans DSM 44931(ThAC)and Haloactinopolyspora alba DSM 45211(HaAC),respectively.The recombinant ThAC and HaAC were expressed in Escherichia coli with molecular weights of 36.1 and 36.0 kDa respectively.The presence of 2500 and 2200 mmolL^(-1)1 NaCl significantly enhanced the enzyme activities of ThAC and HaAC,with 22-fold and 7.4-fold higher activities compared to those without NaCl,respectively.Several divalent metal ions were found to activate the recombinant ACs to different extents,and the optimal metal ion was Mg^(2+)for both ThAC and HaAC with concentrations of 80 mmol·L^(-1) and 40 mmol·L^(-1) respectively.Purified ThAC and HaAC had the optimal specific activities((4.59±0.35)×10^(4) and(7.76±0.52)×10^(4) U·mg^(-1))and catalytic efficiency(4.47 and 5.30 L·mmol^(-1)·s^(-1))at 45℃ and 40℃ respectively,while the optimum pH of both two recombinant ACs was 10.0.This is the first report of the halophilic Class III ACs,which could make new contributions to explore and study ACs for further associated investigations.
基金supported by the National Natural Science Foundation of China(52027802)the Key Research and Development Program of Zhejiang Province(2020C05014,2020C01008,and 2021C01193).
文摘Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO_(3) solution is found to contain Fe2O_(3), SiO_(2), Al2O_(3), and AlO(OH). The Fe2O_(3) transforms into Fe3O4 with weakened oxidizability of the NO_(3)– at an elevated pH, whereas an alkaline NaNO_(3) solution leads to the production of Al2O_(3), AlO(OH), and SiO_(2). Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.
基金supported by the National Key R&D Program of China under Grant No.2017YFA0305500National Natural Science Foundation of China under Grant No.61904096,Taishan Scholars Program of Shandong Province under Grant No.tsqn201812006+2 种基金Natural Science Foundation of Shandong Province under Grants No.ZR2022JQ05 and No.ZR2022QF025Shandong University Multidisciplinary Research and Innovation Team of Young Scholars under Grant No.2020QNQT015“Outstanding Youth Scholar and Qilu Young Scholar”Programs of Shandong University.
文摘Omnidirectional photodetectors attract enormous attention due to their prominent roles in optical tracking systems and omnidirectional cameras.However,it is still a challenge for the construction of high-performance omnidirectional photodetectors where the incident light can be effectively absorbed in multiple directions and the photo-generated carriers can be effectively collected.Here,a high-performance omnidirectional self-powered photodetector based on the CsSnBr_(3)/indium tin oxide(ITO)heterostructure film was designed and demonstrated.The as-fabricated photodetector exhibited an excellent self-powered photodetection performance,showing responsivity and detectivity up to 35.1 mA/W and 1.82×10^(10) Jones,respectively,along with the smart rise/decay response time of 4 ms/9 ms.Benefitting from the excellent photoelectric properties of the CsSnBr_(3) film as well as the ability of the CsSnBr_(3)/ITO heterostructure to efficiently separate and collect photo-generated carriers,the as-fabricated photodetector also exhibited an excellent omnidirectional self-powered photodetection performance.All the results have certified that this work finds an efficient way to realize high-performance omnidirectional self-powered photodetectors.
文摘BACKGROUND Both lung cancer and cardiometabolic diseases are leading causes of death in China,and they share some common risk factors.However,the prevalence and long-term effect of pre-existing cardiometabolic comorbidities(CMCs)on the survival of middle-aged and elderly lung cancer patients are still not clear.METHODS We consecutively recruited 3477 non-small cell lung cancer(NSCLC)patients between January 2011 and December 2018 from four cancer specialty hospitals in China.Univariable and multivariable adjusted Cox proportional hazard models were conducted to evaluate the risk factors associated with mortality.Hazard ratio(HR)for mortality and corresponding 95%CI were calculated.RESULTS The prevalence of CMCs was 30.0%in middle-aged NSCLC patients and 45.5%in elderly NSCLC patients.Log-rank analysis presented statistically significant differences in median survival time between patients with CMCs and without CMCs in both the middle-aged group(21.0 months vs.32.0 months,P<0.01)and the elderly group(13.0 months vs.17.0 months,P=0.01).Heart failure(HR=1.754,95%CI:1.436–2.144,P<0.001)and venous thrombus embolism(HR=2.196,95%CI:1.691–2.853,P<0.001)were independent risk factors for the survival of middle-aged NSCLC patients,while heart failure(HR=1.709,95%CI:1.371–2.130,P<0.001)continued to decrease overall survival in the elderly group.Hyperlipidemia may be a protective factor for survival in middle-aged group(HR=0.741,95%CI:0.566–0.971,P=0.030).CONCLUSIONS Our findings demonstrate for the first time the prevalence and prognostic value of pre-existing CMCs in Chinese middle-aged and elderly NSCLC patients.
基金Supported by 2017 Teaching Quality and Teaching Reform Project of Guizhou University of Traditional Chinese Medicine(3045-045170035)2018 School-level Undergraduate Teaching Engineering Construction Project of Guiyang College of Traditional Chinese Medicine(GZY-JG(2018)03)。
文摘This study was conducted to explore the construction of scaffolding teaching mode of Traditional Chinese Medicine under the background of"Internet+".The students of Grade 2018 majoring in traditional Chinese medicine were selected as the object,and some chapters of the textbook of traditional Chinese medicine were selected and taught by the traditional teaching mode while interspersing the scaffolding teaching mode,in order to help the implementation of the scaffolding teaching model.We adopted the methods of setting up situational scaffolding,question scaffolding and guide scaffolding to carry out relevant teaching contents.The scaffolding instruction model has a good degree of participation,and to a certain extent,it stimulates students'self-consciousness and enthusiasm,and improves their ability of analyzing and solving problems and their spirit of innovation.