The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti eleme...The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.展开更多
Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematic...Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet are improved by 112% and reduced by 26% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient(α) and the coercivity temperature coefficient(β) of the magnets are improved after diffusion treatment. Microstructure shows that Tb element enriches in the surface region of Nd2Fe(14)B grains and is expected to exist as(Nd,Tb)2Fe(14)B phase. Thus, the magneto-crystalline anisotropy field of the magnet improves remarkably. As a result, the sintered Nd-FeB magnets by grain boundary diffusion with TbH3 nanoparticles exhibit enhanced coercivity.展开更多
Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically stu...Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically studied. It shows that the remanence, coercivity, and maximum energy product decrease gradually with the increase in CuZn5 doping content. The magnet's corrosion kinetics in autoclaves environment and its electrochemical properties in electrolytes were also examined. It is interesting to see that the weight loss of 3.5 wt% and 4.5 wt% CuZn5 powders doping magnets is only 1 and 0 mg.cm^-2 after autoclaves test at 121 ℃, 2 × 10^5 Pa for 500 h, respectively, which is much lower than that of the magnets without CuZn5 doping. Electrochemical results show that the CuZn5 powders doping magnets display more positive corrosion potential (Eoorr) and lower corrosion current density (Icorr) than those of the original magnets without CuZn5 doping in sulphuric acid electrolyte and distilled water. It is, therefore, concluded that doping CuZn5 powders is a promising way to enhance the corrosion resistance of sintered Nd-Fe-B magnets.展开更多
Sm(Co,Cu,Fe,Zr)z magnets have drawn much attention for high-temperature applications due to their high Curie temperature,strong corrosion resistance and thermal stability.The effect of increasing Fe content on the dis...Sm(Co,Cu,Fe,Zr)z magnets have drawn much attention for high-temperature applications due to their high Curie temperature,strong corrosion resistance and thermal stability.The effect of increasing Fe content on the distribution of elements and squareness(Sr)of demagnetization curves were investigated for two kinds of magnets with different nominal compositions of Sm(CobalFe0.15-Cu0.07Zr0.03)7.8 and Sm(CobalFe0.28Cu0.07Zr0.03)6.6 in this work.The magnetic properties of the magnets with higher Fe content fluctuate greatly after different solution treatments,indicating that they are more sensitive to the process temperature.The increase in Fe content can obviously enhance the cellular phase size.Meanwhile,inhomogeneous Cu distribution is observed in the Sm(CobalFe0.28-Cu0.07Zr0.03)6.6 magnet,resulting in the different cellular structures and corresponding magnetic domain patterns in different regions in the inner grains.Furthermore,the lower Cu content regions are responsible for the wider magnetic domain,which have weaker resistance to applied magnetic field.As a result,Sr of demagnetization curve decreases with the increase in Fe content due to the inhomogeneous Cu distribution,which was confirmed by in-situ observation of electron probe micro-analyzer(EPMA)and magneto-optical Kerr optical microscope(MOKE).展开更多
Anisotropic MnBi/NdFeB (MnBi contents of 0 wt%, 20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%) hybrid bonded magnets were prepared by molding compression using MnBi powders and commercial hydro-genation disproportiona...Anisotropic MnBi/NdFeB (MnBi contents of 0 wt%, 20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%) hybrid bonded magnets were prepared by molding compression using MnBi powders and commercial hydro-genation disproportionation desorption and recombination (HDDR) NdFeB powders. Magnetic measurements at room temperature show that with MnBi content increasing, the magnetic properties of the MnBi/NdFeB hybrid bonded magnets all decrease gradually, while the density of the hybrid magnets improves almost linearly. In a temperature range of 293-398 K, the coercivity temperature coefficient of the hybrid magnets improves gradually from -0.59 %.K^-1 for the pure NdFeB bonded magnet to -0.32 %.K^-1 for the hybrid bonded magnet with 80 wt% MnBi, and the pure MnBi bonded magnet exhibits a positive coercivity temperature coefficient of 0.61%-K^-1.展开更多
SmCo_(5)sintered magnets with good thermal stability are mainly used in high-temperature field.In this study,two types of SmCo_(5) powders with different nominal z values were mixed and synthesized into SmCo_(5) magne...SmCo_(5)sintered magnets with good thermal stability are mainly used in high-temperature field.In this study,two types of SmCo_(5) powders with different nominal z values were mixed and synthesized into SmCo_(5) magnets by the traditional powder metallurgy method.The magnetic properties of the SmCo_(5) sintered magnet are maximum energy product of(BH)_(max)=172.29 kJ·m^(-3),remanence of B_(r)=7.47×10^(5)A·m^(-1)and coercivity of H_(ci)=2.42 T.The results show that there are three coexisting phases in the magnet,which are SmCo_(5)phase,Sm_(2)Co_(7)phase and Sm_(2)O_(3)phase.The microstructural observation indicates that the average grain size in the magnet is about 8μm,and the high coercivity of this magnet is attributed to these fine grains.X-ray diffraction(XRD)and electron backscatter diffraction(EBSD)results indicate that the magnet has a well-aligned(00l)orientation texture.展开更多
The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built,and the vacuum chamber,cooling roller and sample were taken into account as a system.The existing matu...The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built,and the vacuum chamber,cooling roller and sample were taken into account as a system.The existing mature technology was in order to verify the correctness of simulation.The rapid quenching ribbons with different roll speeds were used as the simulation objects.The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained.The experimental thickness of the ribbons is proportional to the theoretical thickness.In the same spray condition,with the roll speed increasing,the thickness decreases linearly.At the speed range of25-30 m·s^(-1),the simulated calculation date is close to the experimental date,which can be considered as an ideal technological parameter.展开更多
RCo5(R=rare earth)sintered magnets have good temperature stability,so it is still widely used in high temperature field.In this paper,by the method of adding liquid phase SmCo1.7 to the main phase,Sm0.7Y0.3Co5 magnet ...RCo5(R=rare earth)sintered magnets have good temperature stability,so it is still widely used in high temperature field.In this paper,by the method of adding liquid phase SmCo1.7 to the main phase,Sm0.7Y0.3Co5 magnet was prepared by traditional powder metallurgical process.The results show the presence of a main phase RCo5,a minor phase R2 Co7,and a R-rich phase in the magnet.Contrasting the results of the XRD(X-ray diffraction)in random and oriented directions,the magnet has a well-aligned(00l)orientated texture,which is consistent with the result of the electron backscattered diffraction(EBSD).The Sm0.7Y0.3Co5 sintered magnet has good magnetic properties as remanence(Br)is 0.96 T,the coercivity(Hcj)is 1201.96 kA·m-1,and maximum magnetic energy product((BH)max)is 175.16 kJ m-3.展开更多
The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH3 nanoparticles were systematically investigated.Compared to the original magne...The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH3 nanoparticles were systematically investigated.Compared to the original magnet,the coercivity(Hci) of the GBDP magnets improved from 1702 to 2374 kA·m^(-1) with few remanence reduced from 1.338 to 1.281 T.Electron probe microanalysis(EPMA) analysis showed that Tb diffused along grain boundary,mainly concentrated in the boundary layer of the main phase,and formed a core-shell structure.Magneto-optical Kerr optical microscope(MOKE) analysis showed that there were two types of magnetic domain reversal in one grain:gradual reversal(GR) and abrupt reversal(AR).When the applied field decreased from saturated magnetic field,the reversal magnetic domain nucleated and then spread over the whole grain gradually,which was called GR.However,some grains kept the single domain state until Hh which was a value of reverse direction applied field in second quadrant in hysteresis loops.When the applied field increased above Hh,reversed magnetic domain would suddenly appear and occupy most of the area of the grain,which was called AR.That is because AR grains have higher reversed magnetic domain nucleation field(HRN2) than GR grains(HRN1).After GBDP,the area of AR region increased obviously and GR region decreased accordingly,indicating that the core-shell structure could change GR grain into AR grain.The coreshell structure could suppress flipping of the magnetization of the grains due to the large magnetic anisotropy of Tbrich shell.Therefore,large AR area led to high coercivity.展开更多
Structure, magnetic properties, and thermal stability of ternary Sm1-xTmxCo5 compounds were studied via X-ray diffraction(XRD), thermal magnetic analysis(TMA), and magnetic measurements. XRD results show that all ...Structure, magnetic properties, and thermal stability of ternary Sm1-xTmxCo5 compounds were studied via X-ray diffraction(XRD), thermal magnetic analysis(TMA), and magnetic measurements. XRD results show that all the compounds have a main phase of hexagonal CaCu5-type crystal structure with small amount of impurity phases; increasing Tm content is associated with contraction of the hexagonal unit cell in the direction of the c axis and expansion of the a and b parameters. TMA results indicate that the Curie temperature(TC) of Sm1-xTmxCo5 compounds gets higher with the increase in Tm content.Magnetic measurements show that both the magnetic anisotropy field(HA) and the magnetization at an applied field of 7 T(M7 T) decrease with the increase of Tm content. However, the thermal stability of both the HAand M7 Tof all the Tm doped compounds is remarkably improved compared with that of the pure SmCo5 compound, leading to the result that both the M7 Tand HAof Sm0.8Tm0.2Co5 .2are higher than those of SmCo5 compound at 473 K, which indicates the good potential of Tm doped compound in the practical applications at elevated temperature.展开更多
基金the National Key Research and De-velopment Program of China(Grant No.2021YFB3500300)the National Natural Science Foundation of China(Grant No.51931007)the Program of Top Disciplines Construc-tion in Beijing(Grant No.PXM2019014204500031).
文摘The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.51001002 and 51371002)the National High Technology Research and Development Program of China(No.2012AA063201)+3 种基金the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KZ201110005007)Jinghua Talents of Beijing University of TechnologyRixin Talents of Beijing University of Technologythe Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions
文摘Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet are improved by 112% and reduced by 26% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient(α) and the coercivity temperature coefficient(β) of the magnets are improved after diffusion treatment. Microstructure shows that Tb element enriches in the surface region of Nd2Fe(14)B grains and is expected to exist as(Nd,Tb)2Fe(14)B phase. Thus, the magneto-crystalline anisotropy field of the magnet improves remarkably. As a result, the sintered Nd-FeB magnets by grain boundary diffusion with TbH3 nanoparticles exhibit enhanced coercivity.
基金financially supported by the National High Technology Research and Development Program of China (No. 2012AA063201)the National Natural Science Foundation of China (Nos. 51001002 and 51371002)+2 种基金the International S&T Cooperation Program of China (No.2015DFG52020)the Natural Science Foundation of Anhui Province (No.1408085MKL72)the 2011 Cooperative Innovation Center of Beijing University of Technology
文摘Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically studied. It shows that the remanence, coercivity, and maximum energy product decrease gradually with the increase in CuZn5 doping content. The magnet's corrosion kinetics in autoclaves environment and its electrochemical properties in electrolytes were also examined. It is interesting to see that the weight loss of 3.5 wt% and 4.5 wt% CuZn5 powders doping magnets is only 1 and 0 mg.cm^-2 after autoclaves test at 121 ℃, 2 × 10^5 Pa for 500 h, respectively, which is much lower than that of the magnets without CuZn5 doping. Electrochemical results show that the CuZn5 powders doping magnets display more positive corrosion potential (Eoorr) and lower corrosion current density (Icorr) than those of the original magnets without CuZn5 doping in sulphuric acid electrolyte and distilled water. It is, therefore, concluded that doping CuZn5 powders is a promising way to enhance the corrosion resistance of sintered Nd-Fe-B magnets.
基金financially supported by the National Natural Science Foundation of China(Nos.51331003 and 51871005)the International S&T Cooperation Program of China(No.2015DFG52020).
文摘Sm(Co,Cu,Fe,Zr)z magnets have drawn much attention for high-temperature applications due to their high Curie temperature,strong corrosion resistance and thermal stability.The effect of increasing Fe content on the distribution of elements and squareness(Sr)of demagnetization curves were investigated for two kinds of magnets with different nominal compositions of Sm(CobalFe0.15-Cu0.07Zr0.03)7.8 and Sm(CobalFe0.28Cu0.07Zr0.03)6.6 in this work.The magnetic properties of the magnets with higher Fe content fluctuate greatly after different solution treatments,indicating that they are more sensitive to the process temperature.The increase in Fe content can obviously enhance the cellular phase size.Meanwhile,inhomogeneous Cu distribution is observed in the Sm(CobalFe0.28-Cu0.07Zr0.03)6.6 magnet,resulting in the different cellular structures and corresponding magnetic domain patterns in different regions in the inner grains.Furthermore,the lower Cu content regions are responsible for the wider magnetic domain,which have weaker resistance to applied magnetic field.As a result,Sr of demagnetization curve decreases with the increase in Fe content due to the inhomogeneous Cu distribution,which was confirmed by in-situ observation of electron probe micro-analyzer(EPMA)and magneto-optical Kerr optical microscope(MOKE).
基金financially supported by the National Natural Science Foundation of China(No.51271005)the Beijing Municipal Natural Science Foundation(No.2122006)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.32009001201301)the Project from Samsung Advanced Institute of Technology(No.46009001201402)the Fundamental Research Foundation of Beijing University of Technology(No.009000514313002)
文摘Anisotropic MnBi/NdFeB (MnBi contents of 0 wt%, 20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%) hybrid bonded magnets were prepared by molding compression using MnBi powders and commercial hydro-genation disproportionation desorption and recombination (HDDR) NdFeB powders. Magnetic measurements at room temperature show that with MnBi content increasing, the magnetic properties of the MnBi/NdFeB hybrid bonded magnets all decrease gradually, while the density of the hybrid magnets improves almost linearly. In a temperature range of 293-398 K, the coercivity temperature coefficient of the hybrid magnets improves gradually from -0.59 %.K^-1 for the pure NdFeB bonded magnet to -0.32 %.K^-1 for the hybrid bonded magnet with 80 wt% MnBi, and the pure MnBi bonded magnet exhibits a positive coercivity temperature coefficient of 0.61%-K^-1.
基金the State Key Program of Natural Science Foundation of China(No.51331003)the International S&T Cooperation Program of China(No.2015DFG52020)。
文摘SmCo_(5)sintered magnets with good thermal stability are mainly used in high-temperature field.In this study,two types of SmCo_(5) powders with different nominal z values were mixed and synthesized into SmCo_(5) magnets by the traditional powder metallurgy method.The magnetic properties of the SmCo_(5) sintered magnet are maximum energy product of(BH)_(max)=172.29 kJ·m^(-3),remanence of B_(r)=7.47×10^(5)A·m^(-1)and coercivity of H_(ci)=2.42 T.The results show that there are three coexisting phases in the magnet,which are SmCo_(5)phase,Sm_(2)Co_(7)phase and Sm_(2)O_(3)phase.The microstructural observation indicates that the average grain size in the magnet is about 8μm,and the high coercivity of this magnet is attributed to these fine grains.X-ray diffraction(XRD)and electron backscatter diffraction(EBSD)results indicate that the magnet has a well-aligned(00l)orientation texture.
基金financially supported by the National Natural Science Foundation of China(No.51571064)the National Basic Research Program of China(No.2014CB643701)。
文摘The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built,and the vacuum chamber,cooling roller and sample were taken into account as a system.The existing mature technology was in order to verify the correctness of simulation.The rapid quenching ribbons with different roll speeds were used as the simulation objects.The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained.The experimental thickness of the ribbons is proportional to the theoretical thickness.In the same spray condition,with the roll speed increasing,the thickness decreases linearly.At the speed range of25-30 m·s^(-1),the simulated calculation date is close to the experimental date,which can be considered as an ideal technological parameter.
基金financially supported by the State Key Program of Natural Science Foundation of China(Nos.51331003 and 51871005)the International S&T Cooperation Program of China(No.2015DFG52020)
文摘RCo5(R=rare earth)sintered magnets have good temperature stability,so it is still widely used in high temperature field.In this paper,by the method of adding liquid phase SmCo1.7 to the main phase,Sm0.7Y0.3Co5 magnet was prepared by traditional powder metallurgical process.The results show the presence of a main phase RCo5,a minor phase R2 Co7,and a R-rich phase in the magnet.Contrasting the results of the XRD(X-ray diffraction)in random and oriented directions,the magnet has a well-aligned(00l)orientated texture,which is consistent with the result of the electron backscattered diffraction(EBSD).The Sm0.7Y0.3Co5 sintered magnet has good magnetic properties as remanence(Br)is 0.96 T,the coercivity(Hcj)is 1201.96 kA·m-1,and maximum magnetic energy product((BH)max)is 175.16 kJ m-3.
基金financially supported by the National Key Research and Development Program of China(No.2018YFC1903405)Advanced Subject of Beijing+4 种基金China(No.PXM2019014204500031)the National Natural Science Foundation of China(Nos.5137100251331003 and 51201037)the 2011 Cooperative Innovation Center of Beijing University of Technologythe Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions。
文摘The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH3 nanoparticles were systematically investigated.Compared to the original magnet,the coercivity(Hci) of the GBDP magnets improved from 1702 to 2374 kA·m^(-1) with few remanence reduced from 1.338 to 1.281 T.Electron probe microanalysis(EPMA) analysis showed that Tb diffused along grain boundary,mainly concentrated in the boundary layer of the main phase,and formed a core-shell structure.Magneto-optical Kerr optical microscope(MOKE) analysis showed that there were two types of magnetic domain reversal in one grain:gradual reversal(GR) and abrupt reversal(AR).When the applied field decreased from saturated magnetic field,the reversal magnetic domain nucleated and then spread over the whole grain gradually,which was called GR.However,some grains kept the single domain state until Hh which was a value of reverse direction applied field in second quadrant in hysteresis loops.When the applied field increased above Hh,reversed magnetic domain would suddenly appear and occupy most of the area of the grain,which was called AR.That is because AR grains have higher reversed magnetic domain nucleation field(HRN2) than GR grains(HRN1).After GBDP,the area of AR region increased obviously and GR region decreased accordingly,indicating that the core-shell structure could change GR grain into AR grain.The coreshell structure could suppress flipping of the magnetization of the grains due to the large magnetic anisotropy of Tbrich shell.Therefore,large AR area led to high coercivity.
基金financially supported by the State Key Development Program of Basic Research of China (No. 2010CB934600)State Key Laboratory of Advanced Metals and Materials (No. 2011-ZD02)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (No. 009000543113507)
文摘Structure, magnetic properties, and thermal stability of ternary Sm1-xTmxCo5 compounds were studied via X-ray diffraction(XRD), thermal magnetic analysis(TMA), and magnetic measurements. XRD results show that all the compounds have a main phase of hexagonal CaCu5-type crystal structure with small amount of impurity phases; increasing Tm content is associated with contraction of the hexagonal unit cell in the direction of the c axis and expansion of the a and b parameters. TMA results indicate that the Curie temperature(TC) of Sm1-xTmxCo5 compounds gets higher with the increase in Tm content.Magnetic measurements show that both the magnetic anisotropy field(HA) and the magnetization at an applied field of 7 T(M7 T) decrease with the increase of Tm content. However, the thermal stability of both the HAand M7 Tof all the Tm doped compounds is remarkably improved compared with that of the pure SmCo5 compound, leading to the result that both the M7 Tand HAof Sm0.8Tm0.2Co5 .2are higher than those of SmCo5 compound at 473 K, which indicates the good potential of Tm doped compound in the practical applications at elevated temperature.