The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of X...Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of Xinjiang and with a large distribution area of saline aquifer,is an effective carbon storage site.Based on well logging data and 2D seismic data,a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed,and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study.The results show that within 100 km^(2)of the saline aquifer of Donggou Formation in the vicinity of D7 well,the theoretical static CO_(2)storage is 71.967×106 tons(P50)①,and the maximum dynamic CO_(2)storage is 145.295×106 tons(Case2).The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO_(2)in the reservoir.The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage.Based on the results from theoretical static calculation and the dynamic simulation,the effective coefficient of CO_(2)storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%.This study can be applied to the engineering practice of CO_(2)sequestration in the deep saline aquifer in Xinjiang.展开更多
The United Nations Sustainable Development Summit was held on September 25,2015,at the headquarter in New York.There were 17 Sustainable Development Goals formally adopted by 193 member states of the United Nations at...The United Nations Sustainable Development Summit was held on September 25,2015,at the headquarter in New York.There were 17 Sustainable Development Goals formally adopted by 193 member states of the United Nations at the summit,proposing to eliminate extreme poverty globally by 2030 and to completely eliminate poverty in every single corner of the world.In 2020,the Chinese government announced that China has been lifted out of extreme poverty after years of great efforts.展开更多
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
基金This work was supported by the National Natural Science Foundation of China(NSFC,Grant No.41702284,41602272)National key R&D program of China(Grant No.2019YFE0100100)+2 种基金the Na-tural Science Foundation of Hubei Province,China(Grant No.2019CFB451)and the Open Fund of Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2020zy003)This work was also par-tially supported by the China Australia Geological Storage of CO_(2)project(CAGS),and the China Geo-logical Survey project(Grant No.DD20160307).
文摘Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of Xinjiang and with a large distribution area of saline aquifer,is an effective carbon storage site.Based on well logging data and 2D seismic data,a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed,and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study.The results show that within 100 km^(2)of the saline aquifer of Donggou Formation in the vicinity of D7 well,the theoretical static CO_(2)storage is 71.967×106 tons(P50)①,and the maximum dynamic CO_(2)storage is 145.295×106 tons(Case2).The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO_(2)in the reservoir.The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage.Based on the results from theoretical static calculation and the dynamic simulation,the effective coefficient of CO_(2)storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%.This study can be applied to the engineering practice of CO_(2)sequestration in the deep saline aquifer in Xinjiang.
文摘The United Nations Sustainable Development Summit was held on September 25,2015,at the headquarter in New York.There were 17 Sustainable Development Goals formally adopted by 193 member states of the United Nations at the summit,proposing to eliminate extreme poverty globally by 2030 and to completely eliminate poverty in every single corner of the world.In 2020,the Chinese government announced that China has been lifted out of extreme poverty after years of great efforts.