This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance ...This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance method are proposed to counteract sideslip drift caused by cross-track velocity.The proposed differentiator can accurately observe the cross-track error and sideslip angle for snake robots to avoid errors caused by calculating sideslip angle approximately.In our method,the designed piecewise auxiliary function guarantees the finite-time stability of position errors.Secondly,for the case of external disturbances and state constraints,a Barrier Lyapunov functionbased backstepping adaptive path following controller is presented to improve the robot’s robustness.The uniform ultimate boundedness of the closed-loop system is proved by analyzing stability.Additionally,a gait frequency adjustment-based virtual velocity control input is derived to achieve the exponential convergence of the tangential velocity.At last,the availability and superiority of this work are shown through simulation and experiment results.展开更多
Redox catalysts play a vital role in the interconversion of two significant greenhouse gases,CO_(2)and CH_(4),via chemical looping methane dry reforming technology.Herein,a series of transition metals-alloyed and core...Redox catalysts play a vital role in the interconversion of two significant greenhouse gases,CO_(2)and CH_(4),via chemical looping methane dry reforming technology.Herein,a series of transition metals-alloyed and core-shell structured Ni-M/SiO_(2)@CeO_(2)(M=Fe,Co,Cu,Mn,Zr)redox catalyst were fabricated and evaluated in a gas-solid fixed-bed reactor for cycling CH_(4)partial oxidation(PO_(x))and CO_(2)splitting.The catalysts are composed of spherical SiO_(2)core and CeO_(2)shell,and the highly dispersed Ni alloy nanoparticles are the interlayer between core and shell.The oxygen vacancy concentration of Ni-M/SiO_(2)@CeO_(2)followed the order of Co>Cu>Fe>Mn>Zr,and Ni alloying with transition metals significantly enhanced oxygen storage capacity(OSC).Ni-Co/SiO_(2)@CeO_(2)catalyst with abundant oxygen vacancies and a high OSC showed the lowest temperatures of CH_(4)activation(610℃)and CO_(2)decomposition(590℃),thus demonstrating excellent redox reactivity.The catalyst exhibited superior activity and structural stability in the continuous CH_(4)/CO_(2)redox cycles at 615℃,achieving 87%CH_(4)conversion and 83%CO selectivity.The proposed catalyst shows great potential for the utilization of CH_(4)and CO_(2)in a redox mode,providing a new sight for design redox catalyst in chemical looping or related fields.展开更多
The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independe...The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.展开更多
BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the...BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the effects of intraplantar and intrathecal injection of Glu on c-Fos expression in the L5 spinal cord dorsal horn Ⅰ/Ⅱ and Ⅲ/Ⅳ layers after spinal nerve ligation, and to study the effects of the N-methyI-D-aspartic acid (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5), and a selective group I mGluR antagonist, 7-hydroyiminocyclo propan[a]chromen-lacarboxylic acid ethyl ester (cpccoEt). DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Pharmacology, Oral Anatomy, and Neurobiology, Osaka University Graduate School of Dentistry, from December 2005 to December 2006. MATERIALS: Glu (5 μmol), D-AP5 (50 nmot) and cpccoEt (250 nmol) were provided by Wako Pure Chemical Industries, Osaka, Japan, and diluted in saline (50 μL). The pH of all solutions was adjusted to 7.4. METHODS: Twelve rats were randomly divided into sham operation (n = 6) and spinal nerve ligation (SNL; n = 6) groups for behavioral assessments of neuropathic pain after ligation surgery of the left L5-6 nerve segment. Another 60 rats were randomly divided into sham operation, SNL, saline-intraplantar, saline-intrathecal, Glu-intraplantar, Glu-intrathecal, D-AP5-intrathecal, Glu-D-AP5-intrathecal, cpccoEt-intrathecal, and Glu-cpccoEt-intrathecal groups, with 6 rats in each group. All groups except sham operation group received a similar SNL. On day 14, rats received a 50-μL injection of saline, Glu, D-AP5, and/or cpccoEt into the left intraplantar or intrathecal L5-4 segments. MAIN OUTCOME MEASURES: The number of c-Fos positive neurons in both Ⅰ/Ⅱ and Ⅲ/Ⅳ spinal layers at L6 was observed using immunohistochemistry 2 hours after administration. RESULTS: (1) SNL increased the level of c-Fos expression in two sides of the spinal cord, particularly on Ⅲ/Ⅳ spinal layers of the ligated side. (2) Intraplantar or intrathecal administration of saline significantly increased the c-Fos labeled neurons in Ⅰ/Ⅱ spinal layers of the ligated side, compared with SNL alone (P 〈 0.01). (3) Intraplantar Glu (5 μmol) increased the number of c-Fos positive neurons in Ⅰ/Ⅱ spinal layers compared with intraplantar saline (P〈 0.01). (4) The number of c-Fos neurons in Ⅰ/Ⅱ spinal layers on both the ipsilateral and contralateral side after intraplantar Glu was lower than intrathecal Glu (P〈 0.01), with a 3-fold higher induction by intrathecal Glu. (5) Co-administration of D-AP5 or cpccoEt reduced the effects of intrathecal Glu (P 〈 0.01). CONCLUSION: Intrathecal Glu increases c-Fos expression more than intraplantar Glu. Antagonists of NMDA and group I mGluRs block this effect.展开更多
Leaf development underlies crop growth and productivity and has been a major target of crop domestication and improvement.However,most genes controlling leaf development in barley remain unknown.We identified a dwarf ...Leaf development underlies crop growth and productivity and has been a major target of crop domestication and improvement.However,most genes controlling leaf development in barley remain unknown.We identified a dwarf and liguleless(dl)mutant derived by ethylmethane sulfonate mutagenesis.The dl mutant showed dramatic changes in shoot architecture compared with wild-type(Yangnongpi 5)plants.Besides lacking ligules,the dl mutant showed much shorter plant height(28 cm)than Yangnongpi 5(78 cm).By map-based cloning,the dl gene was localized to a 56.58-kb genomic interval on the long arm of chromosome 7.A C-to-T single-nucleotide substitution was identified at exon position 790,and is a functional mutation resulting in a proline-to-serine substitution at the 264th amino acid residue of HORVU7Hr1G106960.Consequently,HORVU7Hr1G106960 was identified as the DL gene,encoding 269 amino acids and containing the Arabidopsis LSH1 and Oryza G1(ALOG)domain.DL is highly similar to rice OsG1-LIKE 1/2(OsG1L1/2)and sorghum AWN1/AWN1-10 at the amino acid level.Although the dl mutant allele showed no expression changes in selected tissues by real-time PCR,we propose HORVU7Hr1G106960 as a candidate gene conferring the dwarf and liguleless phenotype in barley.展开更多
This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined traj...This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined trajectory.The optimized line-of-sight(LOS)guidance strategy drives the robot’s steering angle to maintain its anti-sideslip ability by predicting position errors and interferences.Then,the predictions of system parameters and viscous friction coefficients can compensate for the joint torque control input.The compensation is adopted to enhance the compatibility of a robot within ever-changing environments.Simulation and experimental outcomes show that our work can decrease the fluctuation peak of the tracking errors,reduce adjustment time,and improve accuracy.展开更多
The monkeypox virus(MPXV)has triggered a current outbreak globally.Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control.It is a significant challenge but necessary...The monkeypox virus(MPXV)has triggered a current outbreak globally.Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control.It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads,as it is one of the DNA viruses with the largest genome and the most AT-biased,and has a significant number of tandem repeats.Here we evaluated the performance of metagenomic and amplicon sequencing techniques,and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland.We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens.Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes.Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences.Besides,several intra-host single nucleotide variations were identified in the first imported mpox case.This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens.The findings of this study will significantly enhance the surveillance of MPXV.展开更多
An essential feature of the subdiffusion equations with theα-order time fractional derivative is the weak singularity at the initial time.The weak regularity of the solution is usually characterized by a regularity p...An essential feature of the subdiffusion equations with theα-order time fractional derivative is the weak singularity at the initial time.The weak regularity of the solution is usually characterized by a regularity parameterσ∈(0,1)∪(1,2).Under this general regularity assumption,we present a rigorous analysis for the truncation errors and develop a new tool to obtain the stability results,i.e.,a refined discrete fractional-type Grönwall inequality(DFGI).After that,we obtain the pointwise-in-time error estimate of the widely used L1 scheme for nonlinear subdiffusion equations.The present results fill the gap on some interesting convergence results of L1 scheme onσ∈(0,α)∪(α,1)∪(1,2].Numerical experiments are provided to demonstrate the effectiveness of our theoretical analysis.展开更多
A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the full...A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.展开更多
This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is li...This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.展开更多
Intelligent robotic systems have gradually penetrated into the fields of social services and military reconnaissance with the rapid economic development.Snake robots,as multi-redundant bionic robots,play an indispensa...Intelligent robotic systems have gradually penetrated into the fields of social services and military reconnaissance with the rapid economic development.Snake robots,as multi-redundant bionic robots,play an indispensable and important role in public life and military needs.1 These robots have been widely favored and highly regarded by the academia and industry because of 1)their small size and flexibility,thereby easily entering small spaces for work,2)their ability to carry a variety of equipment for disaster rescue and military reconnaissance,and 3)their variety of movement modes,which can adapt to various complex terrain environments.展开更多
The aim of this paper is to derive a stable and efficient scheme for solving the one-dimensional time-fractional nonlinear Schrodinger equation set in an unbounded domain.We first derive absorbing boundary conditions ...The aim of this paper is to derive a stable and efficient scheme for solving the one-dimensional time-fractional nonlinear Schrodinger equation set in an unbounded domain.We first derive absorbing boundary conditions for the fractional system by using the unified approach introduced in[47,48]and a linearization procedure.Then,the initial boundary-value problem for the fractional system with ABCs is discretized,a stability analysis is developed and the error estimate O(h^(2)+τ)is stated.To accel-erate the L1-scheme in time,a sum-of-exponentials approximation is introduced to speed-up the evaluation of the Caputo fractional derivative.The resulting algorithm is highly efficient for long time simulations.Finally,we end the paper by reporting some numerical simulations to validate the properties(accuracy and efficiency)of the derived scheme.展开更多
Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer.However,the traditional plant extraction method suffers from unreliable supply,low abundance,and...Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer.However,the traditional plant extraction method suffers from unreliable supply,low abundance,and extremely high cost.Here,we use synthetic biology approach to engineer Saccharomyces cerevisiae for de novo biosynthesis of vindoline and catharanthine,which can be coupled chemically or biologically to vinblastine.On the basis of a platform strain with sufficient supply of precursors and cofactors for biosynthesis,we reconstituted,debottlenecked,and optimized the biosynthetic pathways for the production of vindoline and catharanthine.The vindoline biosynthetic pathway represents one of the most complicated pathways ever reconstituted in microbial cell factories.Using shake flask fermentation,our engineered yeast strains were able to produce catharanthine and vindoline at a titer of 527.1 and 305.1μg·liter^(−1),respectively,without accumulating detectable amount of pathway intermediates.This study establishes a representative example for the production of valuable plant natural products in yeast.展开更多
In this paper,we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations.Optimal error estimates in time and superconvergent error estimates in space are establis...In this paper,we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations.Optimal error estimates in time and superconvergent error estimates in space are established without certain time-step restrictions.The key is to estimate directly the solution bounds in the H-norm for both the nonlinear wave equation and the corresponding fully discrete scheme,while the previous investigations rely on the temporal-spatial error splitting approach.Numerical examples are presented to confirm energy-conserving properties,unconditional convergence and optimal error estimates,respectively,of the proposed fully discrete schemes.展开更多
This paper is concerned with the numerical stability of implicit Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations with constant delay.Using a Halanay inequality generalized by Li...This paper is concerned with the numerical stability of implicit Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations with constant delay.Using a Halanay inequality generalized by Liz and Trofimchuk,we give two sufficient conditions for the stability of the true solution to this class of equations.Runge-Kutta methods with compound quadrature rule are considered.Nonlinear stability conditions for the proposed methods are derived.As an illustration of the application of these investigations,the asymptotic stability of the presented methods for Volterra delay-integro-differential equations are proved under some weaker conditions than those in the literature.An extension of the stability results to such equations with weakly singular kernel is also discussed.展开更多
In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selec...In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selects at each step the column that results in the most significant decrease in the residual power,is one of the most popular sparse recovery algorithms.In this paper,we investigate the number of iterations required for recovering x with the OLS algorithm.We show that OLS provides a stable reconstruction of all K-sparse signals x in[2.8K]iterations provided thatΦsatisfies the restricted isometry property(RIP).Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.展开更多
Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy.Combining de novo protein design and biosynthesis techniques,he...Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy.Combining de novo protein design and biosynthesis techniques,herein,we designed a biomimetic polypeptide self-assembled nano-immunomodulator to trigger the activation of a specific macrophage phenotype.It was intended to be made up of(GGSGGPGGGPASAAANSASRATSNSP)n,the RGD motif from collagen,and the IKVAV motif from laminin.The combination of these domains allows the biomimetic polypeptide to assemble into extracellular matrix-like nanofibrils,creating an extracellular matrix-like milieu for macrophages.Furthermore,changing the concentration further provides a facile route to fine-tune macrophage polarization,which enhances antitumor immune responses by precisely resetting tumor-associated macrophage immune responses into an M1-like phenotype,which is generally considered to be tumor-killing macrophages,primarily antitumor,and immune-promoting.Unlike metal or synthetic polymer-based nanoparticles,this polypeptide-based nanomaterial exhibits excellent biocompatibility,high efficacy,and precise tunability in immunomodulatory effectiveness.These encouraging findings motivate us to continue our research into cancer immunotherapy applications in the future.展开更多
This paper is concerned with numerical solutions of the LDG method for 1D wave equations.Superconvergence and energy conserving properties have been studied.We first study the superconvergence phenomenon for linear pr...This paper is concerned with numerical solutions of the LDG method for 1D wave equations.Superconvergence and energy conserving properties have been studied.We first study the superconvergence phenomenon for linear problems when alternating fluxes are used.We prove that,under some proper initial discretization,the numerical trace of the LDG approximation at nodes,as well as the cell average,converge with an order 2k+1.In addition,we establish k+2-th order and k+1-th order superconvergence rates for the function value error and the derivative error at Radau points,respectively.As a byproduct,we prove that the LDG solution is superconvergent with an order k+2 towards the Radau projection of the exact solution.Numerical experiments demonstrate that in most cases,our error estimates are optimal,i.e.,the error bounds are sharp.In the second part,we propose a fully discrete numerical scheme that conserves the discrete energy.Due to the energy conserving property,after long time integration,our method still stays accurate when applied to nonlinear Klein-Gordon and Sine-Gordon equations.展开更多
This paper is concerned with numerical computations of a class of biologi-cal models on unbounded spatial domains.To overcome the unboundedness of spatial domain,we first construct efficient local absorbing boundary c...This paper is concerned with numerical computations of a class of biologi-cal models on unbounded spatial domains.To overcome the unboundedness of spatial domain,we first construct efficient local absorbing boundary conditions(LABCs)to re-formulate the Cauchy problem into an initial-boundary value(IBV)problem.After that,we construct a linearized finite difference scheme for the reduced IVB problem,and provide the corresponding error estimates and stability analysis.The delay-dependent dynamical properties on the Nicholson’s blowflies equation and the Mackey-Glass equa-tion are numerically investigated.Finally,numerical examples are given to demonstrate the efficiency of our LABCs and theoretical results of the numerical scheme.展开更多
基金supported in part by the National Natural Science Foundation of China(61825305,62171274,U1933125,U2241228,62273019)the Shanghai Science and Technology Major Project(2021SHZDZX)+2 种基金the National Natural Science Foundation of China through the Main Research Projecton Machine Behavior and Human-Machine Collaborated Decision Making Methodology(72192820)the Third Research Projecton Human Behavior in HumanMachine Collaboration(72192822)the China Postdoctoral Science Foundation(2022M710093)。
文摘This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance method are proposed to counteract sideslip drift caused by cross-track velocity.The proposed differentiator can accurately observe the cross-track error and sideslip angle for snake robots to avoid errors caused by calculating sideslip angle approximately.In our method,the designed piecewise auxiliary function guarantees the finite-time stability of position errors.Secondly,for the case of external disturbances and state constraints,a Barrier Lyapunov functionbased backstepping adaptive path following controller is presented to improve the robot’s robustness.The uniform ultimate boundedness of the closed-loop system is proved by analyzing stability.Additionally,a gait frequency adjustment-based virtual velocity control input is derived to achieve the exponential convergence of the tangential velocity.At last,the availability and superiority of this work are shown through simulation and experiment results.
基金supported by the National Natural Science Foundation of China(52066007,22279048)Yunnan Major Scientific and Technological Projects(202202AG050017)the Applied Basic Research Program of Yunnan Province(202101AT070076)。
文摘Redox catalysts play a vital role in the interconversion of two significant greenhouse gases,CO_(2)and CH_(4),via chemical looping methane dry reforming technology.Herein,a series of transition metals-alloyed and core-shell structured Ni-M/SiO_(2)@CeO_(2)(M=Fe,Co,Cu,Mn,Zr)redox catalyst were fabricated and evaluated in a gas-solid fixed-bed reactor for cycling CH_(4)partial oxidation(PO_(x))and CO_(2)splitting.The catalysts are composed of spherical SiO_(2)core and CeO_(2)shell,and the highly dispersed Ni alloy nanoparticles are the interlayer between core and shell.The oxygen vacancy concentration of Ni-M/SiO_(2)@CeO_(2)followed the order of Co>Cu>Fe>Mn>Zr,and Ni alloying with transition metals significantly enhanced oxygen storage capacity(OSC).Ni-Co/SiO_(2)@CeO_(2)catalyst with abundant oxygen vacancies and a high OSC showed the lowest temperatures of CH_(4)activation(610℃)and CO_(2)decomposition(590℃),thus demonstrating excellent redox reactivity.The catalyst exhibited superior activity and structural stability in the continuous CH_(4)/CO_(2)redox cycles at 615℃,achieving 87%CH_(4)conversion and 83%CO selectivity.The proposed catalyst shows great potential for the utilization of CH_(4)and CO_(2)in a redox mode,providing a new sight for design redox catalyst in chemical looping or related fields.
基金supported by the Key Technology Research and Application Demonstration Project for Large-Scale Multi-Scenario Water Electrolysis Hydrogen Production(CTGTC/2023-LQ-06).
文摘The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.
基金the Scientific and Technological Research Project of Jiangxi Provincial Public Health Bureau,No.20071090
文摘BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the effects of intraplantar and intrathecal injection of Glu on c-Fos expression in the L5 spinal cord dorsal horn Ⅰ/Ⅱ and Ⅲ/Ⅳ layers after spinal nerve ligation, and to study the effects of the N-methyI-D-aspartic acid (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5), and a selective group I mGluR antagonist, 7-hydroyiminocyclo propan[a]chromen-lacarboxylic acid ethyl ester (cpccoEt). DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Pharmacology, Oral Anatomy, and Neurobiology, Osaka University Graduate School of Dentistry, from December 2005 to December 2006. MATERIALS: Glu (5 μmol), D-AP5 (50 nmot) and cpccoEt (250 nmol) were provided by Wako Pure Chemical Industries, Osaka, Japan, and diluted in saline (50 μL). The pH of all solutions was adjusted to 7.4. METHODS: Twelve rats were randomly divided into sham operation (n = 6) and spinal nerve ligation (SNL; n = 6) groups for behavioral assessments of neuropathic pain after ligation surgery of the left L5-6 nerve segment. Another 60 rats were randomly divided into sham operation, SNL, saline-intraplantar, saline-intrathecal, Glu-intraplantar, Glu-intrathecal, D-AP5-intrathecal, Glu-D-AP5-intrathecal, cpccoEt-intrathecal, and Glu-cpccoEt-intrathecal groups, with 6 rats in each group. All groups except sham operation group received a similar SNL. On day 14, rats received a 50-μL injection of saline, Glu, D-AP5, and/or cpccoEt into the left intraplantar or intrathecal L5-4 segments. MAIN OUTCOME MEASURES: The number of c-Fos positive neurons in both Ⅰ/Ⅱ and Ⅲ/Ⅳ spinal layers at L6 was observed using immunohistochemistry 2 hours after administration. RESULTS: (1) SNL increased the level of c-Fos expression in two sides of the spinal cord, particularly on Ⅲ/Ⅳ spinal layers of the ligated side. (2) Intraplantar or intrathecal administration of saline significantly increased the c-Fos labeled neurons in Ⅰ/Ⅱ spinal layers of the ligated side, compared with SNL alone (P 〈 0.01). (3) Intraplantar Glu (5 μmol) increased the number of c-Fos positive neurons in Ⅰ/Ⅱ spinal layers compared with intraplantar saline (P〈 0.01). (4) The number of c-Fos neurons in Ⅰ/Ⅱ spinal layers on both the ipsilateral and contralateral side after intraplantar Glu was lower than intrathecal Glu (P〈 0.01), with a 3-fold higher induction by intrathecal Glu. (5) Co-administration of D-AP5 or cpccoEt reduced the effects of intrathecal Glu (P 〈 0.01). CONCLUSION: Intrathecal Glu increases c-Fos expression more than intraplantar Glu. Antagonists of NMDA and group I mGluRs block this effect.
基金supported by the Open Project Program of Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University (JILARKF202002)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA560005)+1 种基金China Agriculture Research System of MOF and MARA (CARS-05)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Leaf development underlies crop growth and productivity and has been a major target of crop domestication and improvement.However,most genes controlling leaf development in barley remain unknown.We identified a dwarf and liguleless(dl)mutant derived by ethylmethane sulfonate mutagenesis.The dl mutant showed dramatic changes in shoot architecture compared with wild-type(Yangnongpi 5)plants.Besides lacking ligules,the dl mutant showed much shorter plant height(28 cm)than Yangnongpi 5(78 cm).By map-based cloning,the dl gene was localized to a 56.58-kb genomic interval on the long arm of chromosome 7.A C-to-T single-nucleotide substitution was identified at exon position 790,and is a functional mutation resulting in a proline-to-serine substitution at the 264th amino acid residue of HORVU7Hr1G106960.Consequently,HORVU7Hr1G106960 was identified as the DL gene,encoding 269 amino acids and containing the Arabidopsis LSH1 and Oryza G1(ALOG)domain.DL is highly similar to rice OsG1-LIKE 1/2(OsG1L1/2)and sorghum AWN1/AWN1-10 at the amino acid level.Although the dl mutant allele showed no expression changes in selected tissues by real-time PCR,we propose HORVU7Hr1G106960 as a candidate gene conferring the dwarf and liguleless phenotype in barley.
基金supported in part by the National Natural Science Foundation of China(U2241228,62273019,61825305,U1933125,72192820,72192824,62171274)the China Postdoctoral Science Foundation(2022M710093)the Open Project Program of the Key Laboratory for Agricultural Machinery Intelligent Control and Manufacturing of Fujian Education Institutions(AMICM202102)。
文摘This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined trajectory.The optimized line-of-sight(LOS)guidance strategy drives the robot’s steering angle to maintain its anti-sideslip ability by predicting position errors and interferences.Then,the predictions of system parameters and viscous friction coefficients can compensate for the joint torque control input.The compensation is adopted to enhance the compatibility of a robot within ever-changing environments.Simulation and experimental outcomes show that our work can decrease the fluctuation peak of the tracking errors,reduce adjustment time,and improve accuracy.
基金supported by the National Key Research and Development Program of China(2022YFC2303401,2022YFC2304100,2016YFD0500301,2021YFC0863300)the Beijing Science and Technology Plan(Z211100002521017)the National Natural Science Foundation of China(82241080)。
文摘The monkeypox virus(MPXV)has triggered a current outbreak globally.Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control.It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads,as it is one of the DNA viruses with the largest genome and the most AT-biased,and has a significant number of tandem repeats.Here we evaluated the performance of metagenomic and amplicon sequencing techniques,and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland.We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens.Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes.Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences.Besides,several intra-host single nucleotide variations were identified in the first imported mpox case.This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens.The findings of this study will significantly enhance the surveillance of MPXV.
基金supported by the National Natural Science Foundation of China under grants 11771162,11771035,12171376 and 2020-JCJQ-ZD-029.
文摘An essential feature of the subdiffusion equations with theα-order time fractional derivative is the weak singularity at the initial time.The weak regularity of the solution is usually characterized by a regularity parameterσ∈(0,1)∪(1,2).Under this general regularity assumption,we present a rigorous analysis for the truncation errors and develop a new tool to obtain the stability results,i.e.,a refined discrete fractional-type Grönwall inequality(DFGI).After that,we obtain the pointwise-in-time error estimate of the widely used L1 scheme for nonlinear subdiffusion equations.The present results fill the gap on some interesting convergence results of L1 scheme onσ∈(0,α)∪(α,1)∪(1,2].Numerical experiments are provided to demonstrate the effectiveness of our theoretical analysis.
基金supported by the National Natural Science Foundation of China under grants No.11971010,11771162,12231003.
文摘A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.
基金This work is supported by NSFC(Grant Nos.11771035,11771162,11571128,61473126,91430216,91530204,11372354 and U1530401),a grant from the RGC of HK 11300517,China(Project No.CityU 11302915),China Postdoctoral Science Foundation under grant No.2016M602273,a grant DRA2015518 from 333 High-level Personal Training Project of Jiangsu Province,and the USA National Science Foundation grant DMS-1315259the USA Air Force Office of Scientific Research grant FA9550-15-1-0001.Jiwei Zhang also thanks the hospitality of Hong Kong City University during the period of his visiting.
文摘This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.
基金supported by the National Natural Science Foundation of China(grant nos.62171274,U1933125,and 62273019)and the China Postdoctoral Science Foundation(grant no.2022M710093),and this project was partly supported by a research grant funded by the University of Macao.
文摘Intelligent robotic systems have gradually penetrated into the fields of social services and military reconnaissance with the rapid economic development.Snake robots,as multi-redundant bionic robots,play an indispensable and important role in public life and military needs.1 These robots have been widely favored and highly regarded by the academia and industry because of 1)their small size and flexibility,thereby easily entering small spaces for work,2)their ability to carry a variety of equipment for disaster rescue and military reconnaissance,and 3)their variety of movement modes,which can adapt to various complex terrain environments.
基金supported by the NSFC under grants 11771035,91430216,U1530401supported by the NSFC under grants Nos.11571128,11771162support of the French ANR grant BOND(ANR-13-BS01-0009-01)and the LIASFMA(funding from the University of Lorraine).
文摘The aim of this paper is to derive a stable and efficient scheme for solving the one-dimensional time-fractional nonlinear Schrodinger equation set in an unbounded domain.We first derive absorbing boundary conditions for the fractional system by using the unified approach introduced in[47,48]and a linearization procedure.Then,the initial boundary-value problem for the fractional system with ABCs is discretized,a stability analysis is developed and the error estimate O(h^(2)+τ)is stated.To accel-erate the L1-scheme in time,a sum-of-exponentials approximation is introduced to speed-up the evaluation of the Caputo fractional derivative.The resulting algorithm is highly efficient for long time simulations.Finally,we end the paper by reporting some numerical simulations to validate the properties(accuracy and efficiency)of the derived scheme.
基金the National Key Research and Development Program of China(2018YFA0901800 and 2021YFC2103200)the Natural Science Foundation of Zhejiang Province(LR20B060003)+1 种基金the Natural Science Foundation of China(22278361)the Fundamental Research Funds for the Central Universities(226-2022-00214).
文摘Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer.However,the traditional plant extraction method suffers from unreliable supply,low abundance,and extremely high cost.Here,we use synthetic biology approach to engineer Saccharomyces cerevisiae for de novo biosynthesis of vindoline and catharanthine,which can be coupled chemically or biologically to vinblastine.On the basis of a platform strain with sufficient supply of precursors and cofactors for biosynthesis,we reconstituted,debottlenecked,and optimized the biosynthetic pathways for the production of vindoline and catharanthine.The vindoline biosynthetic pathway represents one of the most complicated pathways ever reconstituted in microbial cell factories.Using shake flask fermentation,our engineered yeast strains were able to produce catharanthine and vindoline at a titer of 527.1 and 305.1μg·liter^(−1),respectively,without accumulating detectable amount of pathway intermediates.This study establishes a representative example for the production of valuable plant natural products in yeast.
基金supported by National Natural Science Foundation of China (Grant Nos. 11771162,11771128,11871106,11871092 and 11926356)National Safety Administration Fund (Grant No. U1930402)。
文摘In this paper,we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations.Optimal error estimates in time and superconvergent error estimates in space are established without certain time-step restrictions.The key is to estimate directly the solution bounds in the H-norm for both the nonlinear wave equation and the corresponding fully discrete scheme,while the previous investigations rely on the temporal-spatial error splitting approach.Numerical examples are presented to confirm energy-conserving properties,unconditional convergence and optimal error estimates,respectively,of the proposed fully discrete schemes.
基金supported by NSF of China(Grant No.11001033)Natural Science Foundation of Hunan Province(Grant No.10JJ4003)Chinese Society for Electrical Engineering,and Graduates’innovation fund of HUST(No.HF-08-02-2011-011).
文摘This paper is concerned with the numerical stability of implicit Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations with constant delay.Using a Halanay inequality generalized by Liz and Trofimchuk,we give two sufficient conditions for the stability of the true solution to this class of equations.Runge-Kutta methods with compound quadrature rule are considered.Nonlinear stability conditions for the proposed methods are derived.As an illustration of the application of these investigations,the asymptotic stability of the presented methods for Volterra delay-integro-differential equations are proved under some weaker conditions than those in the literature.An extension of the stability results to such equations with weakly singular kernel is also discussed.
基金supported by the National Natural Science Foundation of China(grant nos.61907014,11871248,11701410,61901160)the Natural Science Foundation of Guangdong province(No.2021A1515010857)+2 种基金Youth Science Foundation of Henan Normal University(grant no.2019QK03)China Postdoctoral Science Foundation(grant no.2019M660557)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019).
文摘In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selects at each step the column that results in the most significant decrease in the residual power,is one of the most popular sparse recovery algorithms.In this paper,we investigate the number of iterations required for recovering x with the OLS algorithm.We show that OLS provides a stable reconstruction of all K-sparse signals x in[2.8K]iterations provided thatΦsatisfies the restricted isometry property(RIP).Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.
基金the National Natural Science Foundation of China(nos.32071347,51973116,21935002,and 52003156)ZJU-Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University(02020200-K02013008)+2 种基金the China Postdoctoral Science Foundation(2020M681344)joint laboratory grant from Jiangsu Wuzhong Aesthetics Biotech Co.Ltdand the starting grant of ShanghaiTech University.Materials were tested at Analytical Instrumentation Center(#SPST-AIC10112914)and the Center for High-Resolution Electron Microscopy(CћEM),SPST,ShanghaiTech University.
文摘Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy.Combining de novo protein design and biosynthesis techniques,herein,we designed a biomimetic polypeptide self-assembled nano-immunomodulator to trigger the activation of a specific macrophage phenotype.It was intended to be made up of(GGSGGPGGGPASAAANSASRATSNSP)n,the RGD motif from collagen,and the IKVAV motif from laminin.The combination of these domains allows the biomimetic polypeptide to assemble into extracellular matrix-like nanofibrils,creating an extracellular matrix-like milieu for macrophages.Furthermore,changing the concentration further provides a facile route to fine-tune macrophage polarization,which enhances antitumor immune responses by precisely resetting tumor-associated macrophage immune responses into an M1-like phenotype,which is generally considered to be tumor-killing macrophages,primarily antitumor,and immune-promoting.Unlike metal or synthetic polymer-based nanoparticles,this polypeptide-based nanomaterial exhibits excellent biocompatibility,high efficacy,and precise tunability in immunomodulatory effectiveness.These encouraging findings motivate us to continue our research into cancer immunotherapy applications in the future.
基金This work is supported in part by the National Natural Science Foundation of China(NSFC)under grants Nos.11201161,11471031,11501026,91430216,U1530401China Postdoctoral Science Foundation under grant Nos.2015M570026,2016T90027the US National Science Foundation(NSF)through grant DMS-1419040。
文摘This paper is concerned with numerical solutions of the LDG method for 1D wave equations.Superconvergence and energy conserving properties have been studied.We first study the superconvergence phenomenon for linear problems when alternating fluxes are used.We prove that,under some proper initial discretization,the numerical trace of the LDG approximation at nodes,as well as the cell average,converge with an order 2k+1.In addition,we establish k+2-th order and k+1-th order superconvergence rates for the function value error and the derivative error at Radau points,respectively.As a byproduct,we prove that the LDG solution is superconvergent with an order k+2 towards the Radau projection of the exact solution.Numerical experiments demonstrate that in most cases,our error estimates are optimal,i.e.,the error bounds are sharp.In the second part,we propose a fully discrete numerical scheme that conserves the discrete energy.Due to the energy conserving property,after long time integration,our method still stays accurate when applied to nonlinear Klein-Gordon and Sine-Gordon equations.
基金This work is supported in part by the National Natural Science Foun-dation of China(Grant Nos.11771162,11771035,11571027,91430216 and U1530401)Beijing Nova Program(No.Z151100003150140)Scientific Research Project of Beijing Educational Committee(No.KM201510005032).
文摘This paper is concerned with numerical computations of a class of biologi-cal models on unbounded spatial domains.To overcome the unboundedness of spatial domain,we first construct efficient local absorbing boundary conditions(LABCs)to re-formulate the Cauchy problem into an initial-boundary value(IBV)problem.After that,we construct a linearized finite difference scheme for the reduced IVB problem,and provide the corresponding error estimates and stability analysis.The delay-dependent dynamical properties on the Nicholson’s blowflies equation and the Mackey-Glass equa-tion are numerically investigated.Finally,numerical examples are given to demonstrate the efficiency of our LABCs and theoretical results of the numerical scheme.