Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their i...Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their inter-annual spatial and temporal variability.Then,the relationships between each empirical orthogonal function(EOF)mode and the typhoon count,typhoon landfall count,track pattern,and the Qinghai-Xizang Plateau snow cover(QXPSC)were examined,and the possible physical mechanisms implied by the statistical relationship were explored.The results show the QXPSC significantly affected the surface-atmosphere heat exchange through snow cover(SC)level,then changed the East Asian summer monsoon regional circulation pattern,influenced the subtropical high-pressure system strength and location,and ultimately affected the WNP TCs track patterns and thus changed their landfall locations.展开更多
The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLT...The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.展开更多
The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy w...The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy was investigated in detail by XRD,SEM,TEM,PCI,and DSC method.Because of the synergistic catalytic function of C and Co in C@Co nanocomposites,the Mg_(90)Ce_(5)Y_(5)alloy with 10 wt.%C@Co shows the excellent hydrogen absorption and desorption performances.Time for releasing hydrogen reduces from 150 min to 11 min with the addition of the C@Co composites at the temperature of 300℃.Meanwhile,the dehydrogenation activation energy also declines from 130.3 to 81.9 kJ mol^(-1)H_(2)after the addition of the C@Co composites.This positive effect attributes to the C layer with the high defect density and the Co nanoparticles,which reduces the energy barriers for the nucleation of Mg/MgH_(2)phase and the recombination of hydrogen molecule.Besides,the C@Co composites also improve the activation property of the Mg_(90)Ce_(5)Y_(5)alloy which was folly activated in the first cycle.Moreover,the temperature for initial dehydrogenation and the endothermic peak of the alloy hydride were also decreased.Although the addition of the C@Co composites increases the plateau pressures and decreases the value of the decomposition enthalpy,these differences are so small that the improvement on thermodynamics can hardly be seen.展开更多
The vacuum arc melting method was used to prepare ZrCo1-xCrx(x=0,0.025,0.05,0.075,0.1)alloys.Afterward,the crystal structure,hydrogenation kinetics,thermodynamic properties,and disproportionation performance of ZrCo1-...The vacuum arc melting method was used to prepare ZrCo1-xCrx(x=0,0.025,0.05,0.075,0.1)alloys.Afterward,the crystal structure,hydrogenation kinetics,thermodynamic properties,and disproportionation performance of ZrCo1-xCrx(x=0-0.1)alloys were investigated.The x-ray diffraction spectra demonstrated that ZrCo1-xCrx(x=0-0.1)alloys contained ZrCo and ZrCo2 phases,and their corresponding hydrides consisted of ZrCoH3 and ZrH phases.The activation behaviors of Cr-substituted samples were significantly promoted.The activation time of ZrCo was 7715 s while that of ZrCo0.9Cr0.1 was 195 s.The improvement of kinetics can be attributed to the catalytic hydrogenation of ZrCr2.The activation energy for the hydrogenation of ZrCo was 44.88-kJ·mol^-1 H2 and decreased to 40.34-kJ·mol^-1 H2 for ZrCo0.95Cr0.05.The plateau pressure and width of the pressure-composition-temperature curves decreased slightly as Cr content increased.The extent of disproportionation of ZrCo was 83.68%after being insulated at 798 K for 10 h and decreased slightly to 70.52%for ZrCo0.9Cr0.1.The improvement of anti-disproportionation performance can be attributed to increase in the activation energy of disproportionation from 167.46-kJ·mol^-1 H2 for ZrCo to 168.28-kJ·mol^-1 H2 for ZrCo0.95Cr0.05.展开更多
This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mel...This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mellor-Yamada turbulence closure scheme.The upper ocean thermal structures through Princeton ocean model are examined by experiments in the cases of idealized forcing and real observational situation.The results suggest that Stokes drift can generally enhance turbulence kinetic energy and deepen MLD either in summer or in winter.This effect will improve the simulation results in summer,but it will lead to much deeper MLD in winter compared to observational data.It is found that MLD can be correctly simulated by combining Stokes drift and the thermal effects of the cool skin layer and diurnal warm layer on the upper mixing layer.In the case of high shortwave radiation and weak wind speed,which usually occurs in summer,the heat absorbed from sun is blocked in the warm layer and prevented from being transferred downwards.As a result,the thermal effects in summer nearly has no influence on dynamic effect of Stokes drift that leads to deepening MLD.However,when the stratification is weak in winter,the thermal effects will counteract the dynamic effect of Stokes drift through enhancing the strength of stratification and suppress mixing impact.Therefore,the dynamic and thermal effects should be considered simultaneously in order to correctly simulate upper ocean thermal structures in both summer and winter.展开更多
Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the ...Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the disease.Measuring the hemodynamic factor like the blood pressure,the wall shear stress(WSS)and the oscillatory shear index(OSI)is,however,still beyond the capabilities of in-vivo measurement techniques.So the use of mathematical models and numerical simulations for the studies of the blood flow in arteries and,in general,of the cardiovascular system,both in physiological and pathological conditions,has received an increasing attention in the biomedical community during the last two decades.Indeed,such studies aims at enhancing the current knowledge of the physiology of the cardiovascular system,as well as providing reliable tools for the medical doctors to predict the natural course of pathologies and,possibly,the occurrence of cardiovascular accidents.The computational vascular fluid-structure interaction(FSI)methodology is a numerical simulation method which is used to explain the hemodynamic factors.The WSS on the luminal wall and the mechanical stress in the vascular wall are directly related to the location of the lesion,and the blood flow strongly interacts with the vascular wall motion.The arterial wall continually adapts to the charge of its mechanical environment(due to,for example,growth,atrophy,remodelling,repair,ageing,and disease)and consequently undergoes several irreversible processes.Primary acute mechanisms of vascularFSI numerical simulation seem to be associated with(1)the arterial histology and the patient-specific complex geometry,(2)the typical mechanical properties of the layer,(3)properties of the blood is assumed as Newtonian fluid or non-Newtonian fluid based on the scale ofthe diameter of a vessel,(4)residual stress in the zero-pressure configuration.The arterial system naturally function under permanent physiological loading conditions.Fung defined the residual stress and measured the opening angle which varies greatly along the aortic tree.Consequently,most of these systems never experience a stress-free state in their’service life’,so a stress and strain fields are present in any in vivo obtained patientspecific cardiovascular geometry.The residual stress always be ignored in FSI simulation or be assumed to equal zero,and the vivo patient-specific artery geometry is assumed as zero-pressure configuration.To define the in vivo stress state of artery,an inverse problem needs to be solved:the undeformed shape of a body or its stress state in its deformed state needs to be determined given the deformed configuration and the loads causing this deformation.The modular inverse elastostatics method is used to resolve the pressure-induced stress state for in vivo imaging based on cardiovascular modeling proposed by Peirlinck.Here,we build a living vessel FSI model based on 4 key factors.In order to get the universal simulation results,we focus on idealized geometries of the vessel that represent healthy(physiological)conditions of the cerebral vasculature.Blood can be assumed as the Newtonian fluid at this scale.The anisotropic hyperelastic constitutive law(Gasser-Holzapfel-Ogden)is used in zero-pressure configuration.Afterwards,we propose the material parameters for the different constitutive models and the computational configurations.We demonstrate the importance of introducing the residual stress into vascular blood flow modeling by performing a comparing zero-pressure configuration and no-resistance configuration.We get the conclusion that the zero-pressure status model has smaller displacement and larger stress distribution compared with no-resistance stress model.Hence,the methodology presented here will be particularly useful to study the mechanobiological processes in the healthy and diseased vascular wall.展开更多
The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented...The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment.展开更多
Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10 – xCux (x = 0, 1, 2, 3, 4) were synthesized by rapid quenching technique. The microstructures of the as-cast and quenched alloys were characteri...Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10 – xCux (x = 0, 1, 2, 3, 4) were synthesized by rapid quenching technique. The microstructures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system. The results show that all the as-quenched alloys hold a typical nanocrystalline structure, and the rapid quenching does not change the major phase Mg2Ni. The hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate. Additionally, the rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys, but it slightly impairs the cycle stability of the alloys.展开更多
Building fresh air supply needs to meet certain regulations and fit people’s ever-growing indoor air quality de-mand.However,fresh air handling requires huge energy consumption that goes against the goal of net-zero ...Building fresh air supply needs to meet certain regulations and fit people’s ever-growing indoor air quality de-mand.However,fresh air handling requires huge energy consumption that goes against the goal of net-zero energy buildings.Thus,in this work,an adaptive fresh air pre-handling system is designed to reduce the cool-ing and heating loads of HVAC system.The sky-facing surface of the system uses electrochromic mechanism to manipulate the optical properties and thus make full use of solar energy(solar heating)and deep space cold source(radiative cooling)by switching between heating and cooling modes.In the cooling mode,the sky-facing surface shows a transmittance of down to zero,while the reflectance is high at 0.89 on average.In the heating mode,the electrochromic glass is highly transparent,allowing the sunlight to reach the solar heat absorber.To obtain the energy-saving potential under different climates,six cities were selected from various climate regions in China.Results show that the adaptive fresh air pre-handling system can be effective in up to 55.4%time of a year.The maximum energy-saving ratios for medium office,warehouse,and single-family house can reach up to 11.52%,26.62%,and 18.29%,respectively.In addition,the system shows multi-climate adaptability and broad application scenarios,making it a potential solution to building energy saving.展开更多
In this paper,a numerical study is carried out to investigate the performance of a coupled BIPV/T-AHU system in Sudan.A mathematical model was utilzed,Matab Simulink was used to do simul ation.Results showed good agre...In this paper,a numerical study is carried out to investigate the performance of a coupled BIPV/T-AHU system in Sudan.A mathematical model was utilzed,Matab Simulink was used to do simul ation.Results showed good agreement with experimental data from the literature.The problem studied in this paper is reducing the energy required for heating in winter(preheating BIPV/T)and avoiding the high photovoltaic cell temperature in summer.We compare the energy consumption with and without BIPV/T-AHU in different cities in Sudan.The results showed that utilizing the exhaust air to cool the photovoltaic cell could reduce the PV/T cell temperature in the range(9-12)℃,which can increase the eletrical power output in a range of(12-21.44)W/m^(2).In winter,utilization of the preheating BIPV/T system can decrease the heating load in Wadi Halfa in the range of(6-107.1%).Damazein does not need a high heating power in the daytime for the ait conditioning system depending on the local climate,so the heat energy produced by the system can be used for drying,desiccant cooling,or heating water,with increasing the eletrice power produced by cooling PV/T cells.The results indicated a great posibility to use the BIPV 1 T system under the studied conditions,in addition,this study provides important information for the application of the BIPV/T system in these areas.展开更多
The Mg90Ce5 RE5(RE=La,Ce,Nd)alloys were prepared by a vacuum induction furnace and their micro structure,phase transformation,thermodynamics and kinetics property were systematically studied by XRD,SEM,TEM,and PCT cha...The Mg90Ce5 RE5(RE=La,Ce,Nd)alloys were prepared by a vacuum induction furnace and their micro structure,phase transformation,thermodynamics and kinetics property were systematically studied by XRD,SEM,TEM,and PCT characterization methods.The result shows that the activated alloys are composed of Mg/MgH2 and corresponding REH2+x with nanoscale.The REH2+x grain with Ce and La or Nd functional group have lower nucleation potential barriers than CeH2+x grains as the nucleation location,thus improve the hydrogen absorption kinetics of these alloys among which the Mg90Ce5Nd5 alloy can absorb 90%of the hydrogen within 2 min at 320℃.In addition,the Mg90Ce10 alloy has the lowest activation energy with 103.2 kJ mol-1 and the fastest desorption kinetics,which can release 5 wt%of the hydrogen within 20 min at 320℃.This is a correlation with grain size and the in-suit formed CeH2.73/CeO2 interface.Moreover,the co-doping Ce and La or Nd can effectively disorganize the thermodynamic stability of Mg-based hydrogen storage alloys to a certain degree,but the dehydrogenation kinetics of that still is restricted by the recombination energy of hydrogen ions on the surface.展开更多
Greatly stable thermodynamics and sluggish kinetics impede the practical application of Mg-based hydrogen storage alloys.The modifications of composition and structure are important strategies in turning these hydroge...Greatly stable thermodynamics and sluggish kinetics impede the practical application of Mg-based hydrogen storage alloys.The modifications of composition and structure are important strategies in turning these hydrogen storage properties.In this study,Mg-based Mg90Ce5 Sm5 ternary alloy fabricated by vacuum induction melting was investigated to explore the performance and the reaction mechanism as hydrogen storage material by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM) and pressure-composition isotherms(PCI) measurements.The results indicate that the Mg-based Mg90Ce5 Sm5 ternary alloy consists of two solid solution phases,including the major phases(Ce,Sm)5 Mg41 and the minor phases(Ce,Sm)Mg12.After hydrogen absorption,these phases transform into the MgH2 and(Ce,Sm)H2.73 phase,while after hydrogen desorption,the MgH2 transforms into the Mg phase,but the(Ce,Sm)H2.73 phases are not changed.The alloy has a reversible hydrogen capacity of about 5.5 wt% H2 and exhibits well isothermal hydrogen absorption kinetics.Activation energy of 106 kJ/mol was obtained from the hydrogen desorption data between 573 and 633 K,which also exhibits the enhanced kinetics compared with the pure MgH2 sample,as a result of bimetallic synergy catalysis function of(Ce,Sm)H2.73 phases.The rate of hydrogen desorption is controlled by the release and recombination of H2 from the Mg surface.Furthermore,the changes of enthalpy and entropy of hydrogen absorption/desorption were calculated to be-80.0 kJ/mol H2,-137.5 J/K/mol H2 and 81.2 kJ/mol H2,139.2 J/K/mol H2,respectively.展开更多
The widespread application of 4G and the rapid development of 5G technologies dramatically increase the energy consumption of telecommunication base station (TBS). Remarkably, the air conditioning system accounts for ...The widespread application of 4G and the rapid development of 5G technologies dramatically increase the energy consumption of telecommunication base station (TBS). Remarkably, the air conditioning system accounts for a significant part of energy consumption in TBS. In this work, passive radiative sky cooling technology has been studied to explore its application potential for TBS. We built a simulation model in DeST to investigate the effect of various envelope thermophysical properties on TBS energy saving. The main influencing factors of the radiative sky cooling on TBS energy saving have been concluded and guidance has been raised for further application. An optimized envelope design combining radiative sky cooling with appropriate heat transfer coefficients has been proposed. The energy-saving and economic analysis of the optimized envelope design at different areas shows that, except for the low heat density TBS in severe cold areas, the annual energy-saving rate is 6.77%–64.29%, and the annual total energy saving is 21.94 kWh/m2–52.74 kWh/m2. The payback period is 1.55–4.67 years, and the maximum acceptable cost limited to a 5-year payback period is $3.21/m2–$9.67/m2.展开更多
To achieve required indoor air quality,fresh air supply in buildings should meet relevant standards and regulations.However,the handling of fresh air introduced a cooling load that takes up a large portion of building...To achieve required indoor air quality,fresh air supply in buildings should meet relevant standards and regulations.However,the handling of fresh air introduced a cooling load that takes up a large portion of building energy consumption,especially in tropical and subtropical areas.A proper way should be employed to reduce the cooling load of fresh air.Radiative sky cooling,which is the process that an object cools itself by emitting thermal radiation to outer space without any energy input,is a cost-effective and eco-friendly technology.In this work,a fresh air pre-cooling system using radiative sky cooling is proposed to reduce fresh air cooling load.The system,consisting of filters,a radiative air-cooling system,an air handling unit(AHU),fans,etc.,is installed on the rooftop of the modeled building.Six cities in low-latitude areas are selected and investigated.Results show that with the radiative air-cooling system installed,annual cooling energy consumption of the modeled building can be reduced by around 10%in most cities.For arid areas,e.g.,Abu Dhabi,the system has even better performance with 19.34%annual cooling energy saving.展开更多
A transparent radiative cooling(T-RC)film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window(8-13𝜇m)is applied on roof glazing for building energy saving.To evalu...A transparent radiative cooling(T-RC)film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window(8-13𝜇m)is applied on roof glazing for building energy saving.To evaluate the per-formance of the T-RC film,two identical model boxes(1.0 m×0.6 m×1.2 m,L×W×H)were constructed and the inside air temperatures were measured in August in Ningbo,China.Results show that the maximum temperature difference between the two model boxes with and without the T-RC film was 21.6℃during the experiment.A whole building model was built in EnergyPlus for the model box.With a good agreement achieved between the calculation results and the measured temperature data,the experimentally validated EnergyPlus model was then extended to an 815.1 m^(2)exhibition building with roof glazing to analyze the annual air conditioning(AC)energy consumption.The results show that by incorporating both the T-RC film’s cooling benefit in summer and heating penalty in winter,the annual AC energy consumption of the exhibition building can be reduced by 40.9-63.4%,varying with different climate conditions.展开更多
The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systemati...The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability.展开更多
The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2) alloys were prepared by melt spinning. The effects of Y content on the structures and electrochemical hydrogen storage ...The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2) alloys were prepared by melt spinning. The effects of Y content on the structures and electrochemical hydrogen storage characters were thoroughly studied. The structures of the experimental samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is shown that there are a main phase LaMgNi4 and a second phase LaNi5 in the experimental samples. The variation of Y content incurs obvious changes of the phase abundance without changing phase composition. Namely, with the increase of Y content, the LaMgNi4 phase increases and LaNi5 phase decreases. Furthermore, melt spinning and the replacement of Y for La also lead to the grains refinement of the alloy. The electrochemical tests display that the as-spun alloys possess excellent activation properties, and obtain the maximums of discharge capacity at the first cycling. The replacement of Y for La can visibly facilitate the discharge potential characteristics, however,diminish the discharge capacity. The electrochemical kinetics, involving in the high rate discharge ability (HRD), hydrogen diffusion coefficient (D), limiting current density (IL) and charge transfer rate, increases firstly and then decreases with the increase of Y content. The cyclic stability is greatly improved by melt spinning and the replacement of Y for La, which is derived from the improvement of the anti-corrosion, oxidation-resistance and the anti-pulverization abilities.展开更多
The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy ins...The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy inspections reveal that, by varying the spinning rate and the Nd content, different microstructures could be obtained by melt spinning. Particularly, the as-spun Nd-free alloy holds an entire nanocrystalline structure but the as-spun Nd-added alloy has a nanocrystalline and amorphous structure, which implies that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. Also, the degree of the amorphization in the as-spun Nd-added alloys clearly increases with increasing the spinning rate and the Nd content. The H-storage capacity and the hydrogenation kinetics of amorphous, partially and completely nanocrystalline alloys were investigated and it was found that they are dependent on the microstructure and the phase composition of the alloys. Specially, enhancing the spinning rate from 0 (the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s makes the hydrogen absorption saturation ratio (R5a) (a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increase from 35.2% to 90.3% and the hydrogen desorption ratio (R10d) (a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rise from 12.7% to 44.9% for the (x = 5) alloy. And the growing of the Nd content from 0 to 20 gives rise to the R5a and R10d values rising from 85.7% to 94.5% and from 36.7% to 54.8% for the as-spun (30 m/s) alloys, respectively.展开更多
The influences of the catalysts of CoS2 and MoB2 nano-particles on microstructure and hydrogen stor-age behaviors of as-milled SmsMg41 alloy have been compared in this work. The SmsMg41 + 5 wt.% M (M = COS2, MoS2) ...The influences of the catalysts of CoS2 and MoB2 nano-particles on microstructure and hydrogen stor-age behaviors of as-milled SmsMg41 alloy have been compared in this work. The SmsMg41 + 5 wt.% M (M = COS2, MoS2) alloys were prepared by milling the mechanical ground as-cast SmsMg41 alloy powders (particle size ≤75 μm) with 5 wt.% CoS2 or MoS2 nano-particles (particle size ≤ 30 nm), respectively. The results demonstrate that the CoS2 and MoS2 nanoparticles are embedded into the alloy surface, which is nanostructure containing some crystal defects, such as dislocation, grain boundary and twin etc. Those microstructures play a beneficial role in reducing the total potential barrier that the hydrogen absorption or desorption reactions must overcome, hence improving the hydrogen storage kinetics of the alloys. The as-milled alloys are composed of SmsMg41 and SmMg3 phases, and ball milling refines their crys-tal grains. The MgH2 and Sm3H7 phases appear after hydrogenation, while Mg and Sm3H7 phases exist after dehydrogenation. The dehydriding activation energy of M = CoS2 and MoS2 alloys are 101.67 and 68.25 kJ/mol H2 respectively. The initial hydrogen desorption of M = CoS2 and MoS2 alloys are 252.9 ℃ and 247.8 ℃.The hydrogenation and dehydrogenation enthalpy changes of M = MoS2 alloy are a little smaller than that of MzCoS2 alloy. Therefore, the catalyst MoS2 can improve the as-milled SmsMg41 alloy in hydrogen storage property more effectively than C0S2.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.42176018,41876010)the Laoshan Laboratory(No.LSKJ202202401)the Graduate Student Fellowship from the China Scholarship Council for Zhaohua WANG(No.201806330006)。
文摘Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their inter-annual spatial and temporal variability.Then,the relationships between each empirical orthogonal function(EOF)mode and the typhoon count,typhoon landfall count,track pattern,and the Qinghai-Xizang Plateau snow cover(QXPSC)were examined,and the possible physical mechanisms implied by the statistical relationship were explored.The results show the QXPSC significantly affected the surface-atmosphere heat exchange through snow cover(SC)level,then changed the East Asian summer monsoon regional circulation pattern,influenced the subtropical high-pressure system strength and location,and ultimately affected the WNP TCs track patterns and thus changed their landfall locations.
基金This work was financially supported by the S&T Research Development Project of the Ministry of Science and Technology, China (No.05021050).
文摘The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.
基金financially supported by the National Natural Science Foundations of China(51761032 and 51871125)the Natural Science Foundations of Inner Mongolia,China(No.2019BS05005)the Scientific Research Staring Foundation of Taiyuan University of Science and Technology(20202040)
文摘The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy was investigated in detail by XRD,SEM,TEM,PCI,and DSC method.Because of the synergistic catalytic function of C and Co in C@Co nanocomposites,the Mg_(90)Ce_(5)Y_(5)alloy with 10 wt.%C@Co shows the excellent hydrogen absorption and desorption performances.Time for releasing hydrogen reduces from 150 min to 11 min with the addition of the C@Co composites at the temperature of 300℃.Meanwhile,the dehydrogenation activation energy also declines from 130.3 to 81.9 kJ mol^(-1)H_(2)after the addition of the C@Co composites.This positive effect attributes to the C layer with the high defect density and the Co nanoparticles,which reduces the energy barriers for the nucleation of Mg/MgH_(2)phase and the recombination of hydrogen molecule.Besides,the C@Co composites also improve the activation property of the Mg_(90)Ce_(5)Y_(5)alloy which was folly activated in the first cycle.Moreover,the temperature for initial dehydrogenation and the endothermic peak of the alloy hydride were also decreased.Although the addition of the C@Co composites increases the plateau pressures and decreases the value of the decomposition enthalpy,these differences are so small that the improvement on thermodynamics can hardly be seen.
基金the National Natural Science Foundation of China(Grant Nos.21573200,2017YFE0301505,21601165,21401173,21573200,and 51731002).
文摘The vacuum arc melting method was used to prepare ZrCo1-xCrx(x=0,0.025,0.05,0.075,0.1)alloys.Afterward,the crystal structure,hydrogenation kinetics,thermodynamic properties,and disproportionation performance of ZrCo1-xCrx(x=0-0.1)alloys were investigated.The x-ray diffraction spectra demonstrated that ZrCo1-xCrx(x=0-0.1)alloys contained ZrCo and ZrCo2 phases,and their corresponding hydrides consisted of ZrCoH3 and ZrH phases.The activation behaviors of Cr-substituted samples were significantly promoted.The activation time of ZrCo was 7715 s while that of ZrCo0.9Cr0.1 was 195 s.The improvement of kinetics can be attributed to the catalytic hydrogenation of ZrCr2.The activation energy for the hydrogenation of ZrCo was 44.88-kJ·mol^-1 H2 and decreased to 40.34-kJ·mol^-1 H2 for ZrCo0.95Cr0.05.The plateau pressure and width of the pressure-composition-temperature curves decreased slightly as Cr content increased.The extent of disproportionation of ZrCo was 83.68%after being insulated at 798 K for 10 h and decreased slightly to 70.52%for ZrCo0.9Cr0.1.The improvement of anti-disproportionation performance can be attributed to increase in the activation energy of disproportionation from 167.46-kJ·mol^-1 H2 for ZrCo to 168.28-kJ·mol^-1 H2 for ZrCo0.95Cr0.05.
基金The National Natural Science Foundation of China under contract Nos 41876010 and 41276015the Public Science and Technology Research Funds Projects of Ocean under contrct No.201505007+1 种基金the Joint Project for the National Oceanographic Center by the NSFC and Shandong Government under contract No.U1406402the National Natural Science Foundation of China under contract No.41806028。
文摘This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mellor-Yamada turbulence closure scheme.The upper ocean thermal structures through Princeton ocean model are examined by experiments in the cases of idealized forcing and real observational situation.The results suggest that Stokes drift can generally enhance turbulence kinetic energy and deepen MLD either in summer or in winter.This effect will improve the simulation results in summer,but it will lead to much deeper MLD in winter compared to observational data.It is found that MLD can be correctly simulated by combining Stokes drift and the thermal effects of the cool skin layer and diurnal warm layer on the upper mixing layer.In the case of high shortwave radiation and weak wind speed,which usually occurs in summer,the heat absorbed from sun is blocked in the warm layer and prevented from being transferred downwards.As a result,the thermal effects in summer nearly has no influence on dynamic effect of Stokes drift that leads to deepening MLD.However,when the stratification is weak in winter,the thermal effects will counteract the dynamic effect of Stokes drift through enhancing the strength of stratification and suppress mixing impact.Therefore,the dynamic and thermal effects should be considered simultaneously in order to correctly simulate upper ocean thermal structures in both summer and winter.
基金supported by the National Natural Science Foundation of China ( 11732001)
文摘Vascular diseases such as aneurysm,hemadostenosis,aortic dissection are the primary causes of people’s death around world.As a result,it is significant to improve our knowledge about them,which can help to treat the disease.Measuring the hemodynamic factor like the blood pressure,the wall shear stress(WSS)and the oscillatory shear index(OSI)is,however,still beyond the capabilities of in-vivo measurement techniques.So the use of mathematical models and numerical simulations for the studies of the blood flow in arteries and,in general,of the cardiovascular system,both in physiological and pathological conditions,has received an increasing attention in the biomedical community during the last two decades.Indeed,such studies aims at enhancing the current knowledge of the physiology of the cardiovascular system,as well as providing reliable tools for the medical doctors to predict the natural course of pathologies and,possibly,the occurrence of cardiovascular accidents.The computational vascular fluid-structure interaction(FSI)methodology is a numerical simulation method which is used to explain the hemodynamic factors.The WSS on the luminal wall and the mechanical stress in the vascular wall are directly related to the location of the lesion,and the blood flow strongly interacts with the vascular wall motion.The arterial wall continually adapts to the charge of its mechanical environment(due to,for example,growth,atrophy,remodelling,repair,ageing,and disease)and consequently undergoes several irreversible processes.Primary acute mechanisms of vascularFSI numerical simulation seem to be associated with(1)the arterial histology and the patient-specific complex geometry,(2)the typical mechanical properties of the layer,(3)properties of the blood is assumed as Newtonian fluid or non-Newtonian fluid based on the scale ofthe diameter of a vessel,(4)residual stress in the zero-pressure configuration.The arterial system naturally function under permanent physiological loading conditions.Fung defined the residual stress and measured the opening angle which varies greatly along the aortic tree.Consequently,most of these systems never experience a stress-free state in their’service life’,so a stress and strain fields are present in any in vivo obtained patientspecific cardiovascular geometry.The residual stress always be ignored in FSI simulation or be assumed to equal zero,and the vivo patient-specific artery geometry is assumed as zero-pressure configuration.To define the in vivo stress state of artery,an inverse problem needs to be solved:the undeformed shape of a body or its stress state in its deformed state needs to be determined given the deformed configuration and the loads causing this deformation.The modular inverse elastostatics method is used to resolve the pressure-induced stress state for in vivo imaging based on cardiovascular modeling proposed by Peirlinck.Here,we build a living vessel FSI model based on 4 key factors.In order to get the universal simulation results,we focus on idealized geometries of the vessel that represent healthy(physiological)conditions of the cerebral vasculature.Blood can be assumed as the Newtonian fluid at this scale.The anisotropic hyperelastic constitutive law(Gasser-Holzapfel-Ogden)is used in zero-pressure configuration.Afterwards,we propose the material parameters for the different constitutive models and the computational configurations.We demonstrate the importance of introducing the residual stress into vascular blood flow modeling by performing a comparing zero-pressure configuration and no-resistance configuration.We get the conclusion that the zero-pressure status model has smaller displacement and larger stress distribution compared with no-resistance stress model.Hence,the methodology presented here will be particularly useful to study the mechanobiological processes in the healthy and diseased vascular wall.
文摘The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment.
文摘Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10 – xCux (x = 0, 1, 2, 3, 4) were synthesized by rapid quenching technique. The microstructures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system. The results show that all the as-quenched alloys hold a typical nanocrystalline structure, and the rapid quenching does not change the major phase Mg2Ni. The hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate. Additionally, the rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys, but it slightly impairs the cycle stability of the alloys.
基金the support from National Natural Sci-ence Foundation of China(52276178)Natural Science Foundation of Jiangsu Province,China(BK20200373).
文摘Building fresh air supply needs to meet certain regulations and fit people’s ever-growing indoor air quality de-mand.However,fresh air handling requires huge energy consumption that goes against the goal of net-zero energy buildings.Thus,in this work,an adaptive fresh air pre-handling system is designed to reduce the cool-ing and heating loads of HVAC system.The sky-facing surface of the system uses electrochromic mechanism to manipulate the optical properties and thus make full use of solar energy(solar heating)and deep space cold source(radiative cooling)by switching between heating and cooling modes.In the cooling mode,the sky-facing surface shows a transmittance of down to zero,while the reflectance is high at 0.89 on average.In the heating mode,the electrochromic glass is highly transparent,allowing the sunlight to reach the solar heat absorber.To obtain the energy-saving potential under different climates,six cities were selected from various climate regions in China.Results show that the adaptive fresh air pre-handling system can be effective in up to 55.4%time of a year.The maximum energy-saving ratios for medium office,warehouse,and single-family house can reach up to 11.52%,26.62%,and 18.29%,respectively.In addition,the system shows multi-climate adaptability and broad application scenarios,making it a potential solution to building energy saving.
基金This work was jointly supported by Research Fund of State Key Lab-oratory of Technologies in Space Cryogenic Propellants(SKLTSCP1601)Scientific Research Foundation of Graduate School of Southeast Uni-versity GS501100012595 NO.YBYP1903).
文摘In this paper,a numerical study is carried out to investigate the performance of a coupled BIPV/T-AHU system in Sudan.A mathematical model was utilzed,Matab Simulink was used to do simul ation.Results showed good agreement with experimental data from the literature.The problem studied in this paper is reducing the energy required for heating in winter(preheating BIPV/T)and avoiding the high photovoltaic cell temperature in summer.We compare the energy consumption with and without BIPV/T-AHU in different cities in Sudan.The results showed that utilizing the exhaust air to cool the photovoltaic cell could reduce the PV/T cell temperature in the range(9-12)℃,which can increase the eletrical power output in a range of(12-21.44)W/m^(2).In winter,utilization of the preheating BIPV/T system can decrease the heating load in Wadi Halfa in the range of(6-107.1%).Damazein does not need a high heating power in the daytime for the ait conditioning system depending on the local climate,so the heat energy produced by the system can be used for drying,desiccant cooling,or heating water,with increasing the eletrice power produced by cooling PV/T cells.The results indicated a great posibility to use the BIPV 1 T system under the studied conditions,in addition,this study provides important information for the application of the BIPV/T system in these areas.
基金supported financially by the National Natural Science Foundations of China(Nos.51901105,51761032 and 51871125)the Natural Science Foundation of Inner Mongolia,China(No.2019BS05005)the Inner Mongolia University of Science and Technology Innovation Fund(2019QDL-B11)。
文摘The Mg90Ce5 RE5(RE=La,Ce,Nd)alloys were prepared by a vacuum induction furnace and their micro structure,phase transformation,thermodynamics and kinetics property were systematically studied by XRD,SEM,TEM,and PCT characterization methods.The result shows that the activated alloys are composed of Mg/MgH2 and corresponding REH2+x with nanoscale.The REH2+x grain with Ce and La or Nd functional group have lower nucleation potential barriers than CeH2+x grains as the nucleation location,thus improve the hydrogen absorption kinetics of these alloys among which the Mg90Ce5Nd5 alloy can absorb 90%of the hydrogen within 2 min at 320℃.In addition,the Mg90Ce10 alloy has the lowest activation energy with 103.2 kJ mol-1 and the fastest desorption kinetics,which can release 5 wt%of the hydrogen within 20 min at 320℃.This is a correlation with grain size and the in-suit formed CeH2.73/CeO2 interface.Moreover,the co-doping Ce and La or Nd can effectively disorganize the thermodynamic stability of Mg-based hydrogen storage alloys to a certain degree,but the dehydrogenation kinetics of that still is restricted by the recombination energy of hydrogen ions on the surface.
基金the National Natural Science Foundation of China(51901105,51871125,51761032)Natural Science Foundation of Inner Mongolia,China(2019BS05005)。
文摘Greatly stable thermodynamics and sluggish kinetics impede the practical application of Mg-based hydrogen storage alloys.The modifications of composition and structure are important strategies in turning these hydrogen storage properties.In this study,Mg-based Mg90Ce5 Sm5 ternary alloy fabricated by vacuum induction melting was investigated to explore the performance and the reaction mechanism as hydrogen storage material by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM) and pressure-composition isotherms(PCI) measurements.The results indicate that the Mg-based Mg90Ce5 Sm5 ternary alloy consists of two solid solution phases,including the major phases(Ce,Sm)5 Mg41 and the minor phases(Ce,Sm)Mg12.After hydrogen absorption,these phases transform into the MgH2 and(Ce,Sm)H2.73 phase,while after hydrogen desorption,the MgH2 transforms into the Mg phase,but the(Ce,Sm)H2.73 phases are not changed.The alloy has a reversible hydrogen capacity of about 5.5 wt% H2 and exhibits well isothermal hydrogen absorption kinetics.Activation energy of 106 kJ/mol was obtained from the hydrogen desorption data between 573 and 633 K,which also exhibits the enhanced kinetics compared with the pure MgH2 sample,as a result of bimetallic synergy catalysis function of(Ce,Sm)H2.73 phases.The rate of hydrogen desorption is controlled by the release and recombination of H2 from the Mg surface.Furthermore,the changes of enthalpy and entropy of hydrogen absorption/desorption were calculated to be-80.0 kJ/mol H2,-137.5 J/K/mol H2 and 81.2 kJ/mol H2,139.2 J/K/mol H2,respectively.
基金supported by the Natural Science Foundation of Jiangsu Province, China (BK20200373).
文摘The widespread application of 4G and the rapid development of 5G technologies dramatically increase the energy consumption of telecommunication base station (TBS). Remarkably, the air conditioning system accounts for a significant part of energy consumption in TBS. In this work, passive radiative sky cooling technology has been studied to explore its application potential for TBS. We built a simulation model in DeST to investigate the effect of various envelope thermophysical properties on TBS energy saving. The main influencing factors of the radiative sky cooling on TBS energy saving have been concluded and guidance has been raised for further application. An optimized envelope design combining radiative sky cooling with appropriate heat transfer coefficients has been proposed. The energy-saving and economic analysis of the optimized envelope design at different areas shows that, except for the low heat density TBS in severe cold areas, the annual energy-saving rate is 6.77%–64.29%, and the annual total energy saving is 21.94 kWh/m2–52.74 kWh/m2. The payback period is 1.55–4.67 years, and the maximum acceptable cost limited to a 5-year payback period is $3.21/m2–$9.67/m2.
基金support from the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20200373).
文摘To achieve required indoor air quality,fresh air supply in buildings should meet relevant standards and regulations.However,the handling of fresh air introduced a cooling load that takes up a large portion of building energy consumption,especially in tropical and subtropical areas.A proper way should be employed to reduce the cooling load of fresh air.Radiative sky cooling,which is the process that an object cools itself by emitting thermal radiation to outer space without any energy input,is a cost-effective and eco-friendly technology.In this work,a fresh air pre-cooling system using radiative sky cooling is proposed to reduce fresh air cooling load.The system,consisting of filters,a radiative air-cooling system,an air handling unit(AHU),fans,etc.,is installed on the rooftop of the modeled building.Six cities in low-latitude areas are selected and investigated.Results show that with the radiative air-cooling system installed,annual cooling energy consumption of the modeled building can be reduced by around 10%in most cities.For arid areas,e.g.,Abu Dhabi,the system has even better performance with 19.34%annual cooling energy saving.
基金D.Z.acknowledges the support from“the Fundamental Re-search Funds for the Central Universities”under award number 2242020R10017.
文摘A transparent radiative cooling(T-RC)film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window(8-13𝜇m)is applied on roof glazing for building energy saving.To evaluate the per-formance of the T-RC film,two identical model boxes(1.0 m×0.6 m×1.2 m,L×W×H)were constructed and the inside air temperatures were measured in August in Ningbo,China.Results show that the maximum temperature difference between the two model boxes with and without the T-RC film was 21.6℃during the experiment.A whole building model was built in EnergyPlus for the model box.With a good agreement achieved between the calculation results and the measured temperature data,the experimentally validated EnergyPlus model was then extended to an 815.1 m^(2)exhibition building with roof glazing to analyze the annual air conditioning(AC)energy consumption.The results show that by incorporating both the T-RC film’s cooling benefit in summer and heating penalty in winter,the annual AC energy consumption of the exhibition building can be reduced by 40.9-63.4%,varying with different climate conditions.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51161015 and 51371094)
文摘The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability.
基金financially supported by the National Natural Science Foundations of China (Nos. 51371094 and 51471054)the Natural Science Foundation of Inner Mongolia, China (No. 2015MS0558)
文摘The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2) alloys were prepared by melt spinning. The effects of Y content on the structures and electrochemical hydrogen storage characters were thoroughly studied. The structures of the experimental samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is shown that there are a main phase LaMgNi4 and a second phase LaNi5 in the experimental samples. The variation of Y content incurs obvious changes of the phase abundance without changing phase composition. Namely, with the increase of Y content, the LaMgNi4 phase increases and LaNi5 phase decreases. Furthermore, melt spinning and the replacement of Y for La also lead to the grains refinement of the alloy. The electrochemical tests display that the as-spun alloys possess excellent activation properties, and obtain the maximums of discharge capacity at the first cycling. The replacement of Y for La can visibly facilitate the discharge potential characteristics, however,diminish the discharge capacity. The electrochemical kinetics, involving in the high rate discharge ability (HRD), hydrogen diffusion coefficient (D), limiting current density (IL) and charge transfer rate, increases firstly and then decreases with the increase of Y content. The cyclic stability is greatly improved by melt spinning and the replacement of Y for La, which is derived from the improvement of the anti-corrosion, oxidation-resistance and the anti-pulverization abilities.
基金the financial support from the National Natural Science Foundation of China,China (Nos.51161015 and 51371094)the Natural Science Foundation of Inner Mongolia,China(No.2011ZD10)
文摘The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy inspections reveal that, by varying the spinning rate and the Nd content, different microstructures could be obtained by melt spinning. Particularly, the as-spun Nd-free alloy holds an entire nanocrystalline structure but the as-spun Nd-added alloy has a nanocrystalline and amorphous structure, which implies that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. Also, the degree of the amorphization in the as-spun Nd-added alloys clearly increases with increasing the spinning rate and the Nd content. The H-storage capacity and the hydrogenation kinetics of amorphous, partially and completely nanocrystalline alloys were investigated and it was found that they are dependent on the microstructure and the phase composition of the alloys. Specially, enhancing the spinning rate from 0 (the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s makes the hydrogen absorption saturation ratio (R5a) (a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increase from 35.2% to 90.3% and the hydrogen desorption ratio (R10d) (a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rise from 12.7% to 44.9% for the (x = 5) alloy. And the growing of the Nd content from 0 to 20 gives rise to the R5a and R10d values rising from 85.7% to 94.5% and from 36.7% to 54.8% for the as-spun (30 m/s) alloys, respectively.
基金financially supported by the National Natural Science Foundations of China(51471054,51761032 and51371094)Natural Science Foundation of Inner Mongolia,China(2015MS0558)
文摘The influences of the catalysts of CoS2 and MoB2 nano-particles on microstructure and hydrogen stor-age behaviors of as-milled SmsMg41 alloy have been compared in this work. The SmsMg41 + 5 wt.% M (M = COS2, MoS2) alloys were prepared by milling the mechanical ground as-cast SmsMg41 alloy powders (particle size ≤75 μm) with 5 wt.% CoS2 or MoS2 nano-particles (particle size ≤ 30 nm), respectively. The results demonstrate that the CoS2 and MoS2 nanoparticles are embedded into the alloy surface, which is nanostructure containing some crystal defects, such as dislocation, grain boundary and twin etc. Those microstructures play a beneficial role in reducing the total potential barrier that the hydrogen absorption or desorption reactions must overcome, hence improving the hydrogen storage kinetics of the alloys. The as-milled alloys are composed of SmsMg41 and SmMg3 phases, and ball milling refines their crys-tal grains. The MgH2 and Sm3H7 phases appear after hydrogenation, while Mg and Sm3H7 phases exist after dehydrogenation. The dehydriding activation energy of M = CoS2 and MoS2 alloys are 101.67 and 68.25 kJ/mol H2 respectively. The initial hydrogen desorption of M = CoS2 and MoS2 alloys are 252.9 ℃ and 247.8 ℃.The hydrogenation and dehydrogenation enthalpy changes of M = MoS2 alloy are a little smaller than that of MzCoS2 alloy. Therefore, the catalyst MoS2 can improve the as-milled SmsMg41 alloy in hydrogen storage property more effectively than C0S2.