期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microphysical Characteristics of Extreme-Rainfall Convection over the Pearl River Delta Region, South China from Polarimetric Radar Data during the Pre-summer Rainy Season 被引量:1
1
作者 Hao huANG Kun ZHAO +1 位作者 Johnny CLCHAN dongming hu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期874-886,共13页
During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extrem... During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extreme rainfall rates(ERCFs)are examined.In the regions with high ERCF occurrence frequency,sub-regional differences are found in the lightning flash rate(LFR)distributions.In the region with higher LFRs,the ERCFs have larger volumes of high reflectivity factor above the freezing level,corresponding to more active riming processes.In addition,these ERCFs are more organized and display larger spatial coverage,which may be related to the stronger low-level wind shear and higher terrain in the region.In the region with lower LFRs,the ERCFs have lower echo tops and lower-echo centroids.However,no clear differences of the most unstable convective available potential energy(MUCAPE)exist in the ERCFs in the regions with different LFR characteristics.Regardless of the LFRs,raindrop collisional coalescence is the main process for the growth of raindrops in the ERCFs.In the ERCFs within the region with lower LFRs,the main mechanism for the rapid increase of liquid water content with decreasing altitude below 4 km is through the warm-rain processes converting cloud drops to raindrops.However,in those with higher LFRs,the liquid water content generally decreases with decreasing altitude. 展开更多
关键词 MICROPHYSICS extreme rainfall rate polarimetric radar lightning flash rate
下载PDF
Comparison between the Roles of Low-Level Jets in Two Heavy Rainfall Events over South China
2
作者 Xinyu ZHOU Zhengquan CHENG +1 位作者 Haowen LI dongming hu 《Journal of Meteorological Research》 SCIE CSCD 2022年第2期326-341,共16页
Two heavy rainfall events occurred over the Pearl River Delta during 20-22 May 2020:the first was a warm-sector event and the second a frontal event.Based on ERA5 reanalysis data and observations from wind profilers a... Two heavy rainfall events occurred over the Pearl River Delta during 20-22 May 2020:the first was a warm-sector event and the second a frontal event.Based on ERA5 reanalysis data and observations from wind profilers and Doppler weather radars,the structures and roles of low-level jets(LLJs)during these two heavy rainfall events were analyzed.The results show that:(1)South China was affected by a low-level vortex and a low-level shear line during the two processes.The two heavy rainfall events were both associated with a synoptic-system-related low-level jet(SLLJ)and a boundary layer jet(BLJ).The coupling of the convergence at the exit of the BLJ and the divergence at the entrance of the SLLJ produced strong lifting for the warm-sector heavy rainfall,and the strong convergence between the LLJs and northerly winds as the cold front moved southwards was the main lifting reason for the frontal heavy rainfall.(2)The BLJ was the main transport of water vapor during the two processes.The coupling of the BLJ and SLLJ caused the water vapor convergence to be concentrated in the boundary layer during the first process,whereas the strong convergence between the LLJs and northerly winds led to the lower and middle troposphere having strong water vapor convergence during the second process.(3)During the period of these two heavy rainfall events,the lower and middle troposphere remained unstable.Further analysis show that the differences in the intensity,location,and direction between the BLJ and SLLJ resulted in the pseudo-equivalent potential temperature advection in the boundary layer being significantly larger than in the lower and middle troposphere,which compensated for the energy loss caused by heavy rainfall and maintained the convective instability.These findings add to our knowledge on the roles of LLJs in the pre-summer rainfall over South China. 展开更多
关键词 pre-summer heavy rainfall South China low-level jets water vapor convective instability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部