Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad...Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.展开更多
MXene-based electrode materials exhibit favorable supercapacitor performance in sulfuric acid due to praised pseudocapacitance charge storage mechanism.However,self-stacking of conventional MXene electrodes severely r...MXene-based electrode materials exhibit favorable supercapacitor performance in sulfuric acid due to praised pseudocapacitance charge storage mechanism.However,self-stacking of conventional MXene electrodes severely restricts their electrochemical performance,especially at high loading.Herein,a flexible cross-linked porous Ti3C2Tx-MXene-reduced graphene oxide(Ti3C2Tx-RGO)film is skillfully designed and synthesized by microscopic explosion of graphene oxide(GO)at sudden high te mperature.The generated chamber structure between layers could hold a few of electrolyte,leading to a close-fitting reaction at interlayer and avoiding complex ions transmission paths.The Ti3C2Tx-RGO film displayed a preferable rate performance than that of pure Ti3C2Tx film and a high capacitance of 505 F/g at 2 mV/s.Furthermore,the uniform intralayer structure and unique energy storage process lead to thicknessindependenct electrochemical performances.This work provides a simple and feasible improvement approach for the design of MXene-based electrodes,which can be spread other electrochemical systems limited by ions transport,such as metal ions batteries and catalysis.展开更多
基金This work was supported by the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101605)the National Natural Science Foundation of China(52372175,51972040)+1 种基金the Innovation and Technology Fund of Dalian(N2023JJ12GX020,2022JJ12GX023)Liaoning Normal University 2022 Outstanding Research Achievements Cultivation Fund(No.22GDL002).The authors also acknowledge the assistance of the DUT Instrumental Analysis Center.
文摘Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.
基金supported by the National Natural Science Foundation of China(Nos.51702063,51672056)Natural Science Foundation of Heilongjiang Province(No.LC2018004)+2 种基金China Postdoctoral Science Foundation(Nos.2018M630340,2019T120254)the Fundamental Research Funds for the Central University(No.3072019CF1006)the support from the Starting Research Fund from Harbin Normal University(No.XKB201420)。
文摘MXene-based electrode materials exhibit favorable supercapacitor performance in sulfuric acid due to praised pseudocapacitance charge storage mechanism.However,self-stacking of conventional MXene electrodes severely restricts their electrochemical performance,especially at high loading.Herein,a flexible cross-linked porous Ti3C2Tx-MXene-reduced graphene oxide(Ti3C2Tx-RGO)film is skillfully designed and synthesized by microscopic explosion of graphene oxide(GO)at sudden high te mperature.The generated chamber structure between layers could hold a few of electrolyte,leading to a close-fitting reaction at interlayer and avoiding complex ions transmission paths.The Ti3C2Tx-RGO film displayed a preferable rate performance than that of pure Ti3C2Tx film and a high capacitance of 505 F/g at 2 mV/s.Furthermore,the uniform intralayer structure and unique energy storage process lead to thicknessindependenct electrochemical performances.This work provides a simple and feasible improvement approach for the design of MXene-based electrodes,which can be spread other electrochemical systems limited by ions transport,such as metal ions batteries and catalysis.