Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe...Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.展开更多
The donor–acceptor(D–A)copolymers,which exhibit wide broad absorption and intensified light-harvesting,are highly captivating for applications in solar conversion and optoelectronics.However,designing a polymer stru...The donor–acceptor(D–A)copolymers,which exhibit wide broad absorption and intensified light-harvesting,are highly captivating for applications in solar conversion and optoelectronics.However,designing a polymer structure that can achieve these photophysical properties simultaneously remains a challenge.Herein,we report two novel cyanated units 4-cyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(CBT)and 4,6-dicyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(C2BT)and their corresponding polymers,PCBT and PC2BT.Very interestingly,the PC2BT exhibited a broad absorption band with full width at half maxima(FWHM)of its absorption spectra,almost twice wider than PCBT and benchmark polymers PM6 and D18.Moreover,the PC2BT demonstrated intensified light-harvesting and long-lived exciton.Our in-depth investigation unveiled that the presence of dicyano substitutions induced a strong intramolecular charge transfer(ICT),which,in turn,resulted in the formation of favorable photophysical properties.Therefore,PC2BT-based polymer solar cells(PSCs)exhibited an efficiency of 18.06%,which was a record-setting efficiency for cyanated polymers.This study suggests an efficient strategy for enhancing ICT to design polymers toward favorable photophysical properties and excellent photovoltaic performance.展开更多
In recent years,there has been a shift towards using non-fullerene electron acceptors in organic solar cells(osCs)as a replacement for fullerene derivatives.This change requires polymer donors that possess compatible ...In recent years,there has been a shift towards using non-fullerene electron acceptors in organic solar cells(osCs)as a replacement for fullerene derivatives.This change requires polymer donors that possess compatible physical properties,such as absorption range,HoMo energy level,miscibility,and crystallinity.Moreover,the high cost and poor batch-to-batch reproducibility of polymer donors also hinder future large-scale manufacturing.These emphasize the need to explore alternative types of polymer donors.The imide-functionalized building units possess several key attributes that make their polymers highly promising for non-fullerene OsCs.These attributes include ease of synthesis,strong electron-withdrawing ability,rigid and co-planar structure,and the ability to easily tune solubility through imide side chains.In this review,we summarized the synthetic routes of imide building units,and the structural evolution of imide-functionalized polymer donors by focusing on the effects of polymer structure on their physical,optoelectronic,and photovoltaic properties.We hope that this mini-review will serve as a catalyst for future research on imide-functionalized polymers toward high-performance,cost-effective,and durable organic solar cells(oscs).展开更多
In the present study,the effects of relative humidity on filtrating coal-fired fly ash with hydrophobic poly tetra fluoroethylene(PTFE) membranes were investigated.The intergranular force of particulate matter at diff...In the present study,the effects of relative humidity on filtrating coal-fired fly ash with hydrophobic poly tetra fluoroethylene(PTFE) membranes were investigated.The intergranular force of particulate matter at different RH conditions was measured by analyzing the critical angle between particles.Effects of humidity(from 30% to 70%) on filtration pressure drop and membrane fouling conditions were characterized.It was found the membrane showed optimal filtration resistance of 530 Pa at RH of 60% and the gas permeance can be maintained at 1440 m^(3)·m^(-2)·h^(-1)·kPa^(-1).Moreover,to optimize the operation parameters for this filtration system,effects of fly ash concentration,diameter,membrane pore size,and gas velocities were systematically investigated.展开更多
A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from...A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity.展开更多
To predict and analyze the municipal solid waste(MSW)pyrolysis and gasification process in an updraft fixed bed more veritably and appropriately,numerical modeling based on Gibbs energy minimization was executed using...To predict and analyze the municipal solid waste(MSW)pyrolysis and gasification process in an updraft fixed bed more veritably and appropriately,numerical modeling based on Gibbs energy minimization was executed using the Aspen plus software.The RYield module was combined with the RGibbs module to describe the pyrolysis section,while the RGibbs module was used for the gasification section individually.The proposed model was used to forecast and analyze the target performance parameters including syngas composition,lower heating value(LHV)and carbon conversion rate under different conditions of the gasification temperatures,and ratios and types of gasifying agents.The results indicate that there is a good agreement between the experimental data and the simulated data obtained using this model.The predicted optimum gasification temperature is approximately 750°C,and the best ratio of water vapor as gasifying agent is around 0.4.The mixture of flue gas and water vapor has an economical and recycled prospect among four commonly used gasifying agents.展开更多
Due to the limited capacity of corneal endothelial cells(CECs)division,corneal endothelial diseases have become a great challenge.The cornea is subjected to various mechanical stimuli in vivo,which may have a positive...Due to the limited capacity of corneal endothelial cells(CECs)division,corneal endothelial diseases have become a great challenge.The cornea is subjected to various mechanical stimuli in vivo,which may have a positive or negative influence.Thus,it is significant to gain an insight into the mechanism of mechanobiology of CECs for seeking more possible treatment.The purpose of this study was to determine the impacts of mechanical stretch and substrate stiffness on the morphology and fundamental cell behavior of CECs.Rabbit corneal endothelial cells(RCECs)were subjected to a 5%mechanical stretch or cultured on substrates of different stiffness.The impacts of mechanical stimulus on cell area,aspect ratio,circularity,cell density,nuclear shape,cytoskeleton,and cell viability were investigated.The expressions of the corneal endothelium-related markers ZO-1 and Na^(+)/K^(+) ATPase were also evaluated by confocal immunofluorescence microscopy in the stiffness group.Our results suggested that mechanical stretch promoted the rearrangement of the cytoskeleton while decreasing the cell circularity,nuclear area,and cell density as well as cell viability.RCECs cultured on 10 kPa substrates,which was close to the physiological stiffness of rabbit Descemet's membrane(DM),showed better cell morphology,more stable actin cytoskeleton assembly,and more robust expression of the functional marker compared with other softer or stiffer substrates.In summary,mechanical stretch and substrate stiffness have profound influences on the morphology and function of CECs,which may have implications for the understanding and possible treatment of corneal endothelial diseases.展开更多
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the re...The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.展开更多
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50℃. The average diameter of the microspheres is -850...Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50℃. The average diameter of the microspheres is -850 nm. The microspheres consist of a core of diameter of -800 nm and nanorods of width -50 nm. The nanorods exist at the edge of the core, The Brunauer-Emmett-Teller surface area of the sea-urchin-shaped microspheres is 259.4 m^2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 ℃.展开更多
基金supported by the National Natural Science Foundation of China(52322210,52172144,22375069,21825103,and U21A2069)National Key R&D Program of China(2021YFA1200501)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818102215033,JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory(OVL2023PY007).
文摘Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.
基金supported by the National Natural Science Foundation of China(grant nos.22179076 and 22225504)the Department of Education of Guangdong Province,China(grant no.2021KCXTD032)+2 种基金the Natural Science Foundation of Guangdong Province,China(grant no.2022A1515011803)the Science and Technology Innovation Fund for College students in Guangdong Province,China(grant no.2020329105600A000003)Guangdong Provincial Key Laboratory of Catalysis,China(grant no.2020B121201002).
文摘The donor–acceptor(D–A)copolymers,which exhibit wide broad absorption and intensified light-harvesting,are highly captivating for applications in solar conversion and optoelectronics.However,designing a polymer structure that can achieve these photophysical properties simultaneously remains a challenge.Herein,we report two novel cyanated units 4-cyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(CBT)and 4,6-dicyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(C2BT)and their corresponding polymers,PCBT and PC2BT.Very interestingly,the PC2BT exhibited a broad absorption band with full width at half maxima(FWHM)of its absorption spectra,almost twice wider than PCBT and benchmark polymers PM6 and D18.Moreover,the PC2BT demonstrated intensified light-harvesting and long-lived exciton.Our in-depth investigation unveiled that the presence of dicyano substitutions induced a strong intramolecular charge transfer(ICT),which,in turn,resulted in the formation of favorable photophysical properties.Therefore,PC2BT-based polymer solar cells(PSCs)exhibited an efficiency of 18.06%,which was a record-setting efficiency for cyanated polymers.This study suggests an efficient strategy for enhancing ICT to design polymers toward favorable photophysical properties and excellent photovoltaic performance.
基金supported by the National Natural Science Foundation of China(22179076)the Natural Science Foundation of Guangdong Province(2022A1515011803,2023B1212120011)the Department of Education of Guangdong Province(2021KCXTD032).
文摘In recent years,there has been a shift towards using non-fullerene electron acceptors in organic solar cells(osCs)as a replacement for fullerene derivatives.This change requires polymer donors that possess compatible physical properties,such as absorption range,HoMo energy level,miscibility,and crystallinity.Moreover,the high cost and poor batch-to-batch reproducibility of polymer donors also hinder future large-scale manufacturing.These emphasize the need to explore alternative types of polymer donors.The imide-functionalized building units possess several key attributes that make their polymers highly promising for non-fullerene OsCs.These attributes include ease of synthesis,strong electron-withdrawing ability,rigid and co-planar structure,and the ability to easily tune solubility through imide side chains.In this review,we summarized the synthetic routes of imide building units,and the structural evolution of imide-functionalized polymer donors by focusing on the effects of polymer structure on their physical,optoelectronic,and photovoltaic properties.We hope that this mini-review will serve as a catalyst for future research on imide-functionalized polymers toward high-performance,cost-effective,and durable organic solar cells(oscs).
基金supported by the National Key Research and Development Project of China (2018YFE0203500)the High-end Research and Training Project for Specialty Leading Person of Jiangsu Higher Vocational Colleges (2020GRGDYX039)the Qing Lan Project of Jiangsu Colleges。
文摘In the present study,the effects of relative humidity on filtrating coal-fired fly ash with hydrophobic poly tetra fluoroethylene(PTFE) membranes were investigated.The intergranular force of particulate matter at different RH conditions was measured by analyzing the critical angle between particles.Effects of humidity(from 30% to 70%) on filtration pressure drop and membrane fouling conditions were characterized.It was found the membrane showed optimal filtration resistance of 530 Pa at RH of 60% and the gas permeance can be maintained at 1440 m^(3)·m^(-2)·h^(-1)·kPa^(-1).Moreover,to optimize the operation parameters for this filtration system,effects of fly ash concentration,diameter,membrane pore size,and gas velocities were systematically investigated.
基金Supported by the National Key R&D Program(2016YFC0204000)the National Natural Science Foundation of China(U1510202)+1 种基金the Jiangsu Province Scientific Supporting Project(BK20170046and BE2015023)
文摘A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity.
文摘To predict and analyze the municipal solid waste(MSW)pyrolysis and gasification process in an updraft fixed bed more veritably and appropriately,numerical modeling based on Gibbs energy minimization was executed using the Aspen plus software.The RYield module was combined with the RGibbs module to describe the pyrolysis section,while the RGibbs module was used for the gasification section individually.The proposed model was used to forecast and analyze the target performance parameters including syngas composition,lower heating value(LHV)and carbon conversion rate under different conditions of the gasification temperatures,and ratios and types of gasifying agents.The results indicate that there is a good agreement between the experimental data and the simulated data obtained using this model.The predicted optimum gasification temperature is approximately 750°C,and the best ratio of water vapor as gasifying agent is around 0.4.The mixture of flue gas and water vapor has an economical and recycled prospect among four commonly used gasifying agents.
基金National Natural Science Foundation of China(NSFC)Research Grants(U20A20390,11827803,11402017).
文摘Due to the limited capacity of corneal endothelial cells(CECs)division,corneal endothelial diseases have become a great challenge.The cornea is subjected to various mechanical stimuli in vivo,which may have a positive or negative influence.Thus,it is significant to gain an insight into the mechanism of mechanobiology of CECs for seeking more possible treatment.The purpose of this study was to determine the impacts of mechanical stretch and substrate stiffness on the morphology and fundamental cell behavior of CECs.Rabbit corneal endothelial cells(RCECs)were subjected to a 5%mechanical stretch or cultured on substrates of different stiffness.The impacts of mechanical stimulus on cell area,aspect ratio,circularity,cell density,nuclear shape,cytoskeleton,and cell viability were investigated.The expressions of the corneal endothelium-related markers ZO-1 and Na^(+)/K^(+) ATPase were also evaluated by confocal immunofluorescence microscopy in the stiffness group.Our results suggested that mechanical stretch promoted the rearrangement of the cytoskeleton while decreasing the cell circularity,nuclear area,and cell density as well as cell viability.RCECs cultured on 10 kPa substrates,which was close to the physiological stiffness of rabbit Descemet's membrane(DM),showed better cell morphology,more stable actin cytoskeleton assembly,and more robust expression of the functional marker compared with other softer or stiffer substrates.In summary,mechanical stretch and substrate stiffness have profound influences on the morphology and function of CECs,which may have implications for the understanding and possible treatment of corneal endothelial diseases.
基金supported by the National Natural Science Foundation of China (52172144, 21825103, and U21A2069)the Ministry of Science and Technology of China (2021YFA1200500)the technical support from the Analytical and Testing Center at Huazhong University of Science and Technology。
基金supported by the National High Technology Research and Development Program of China(2012AA062702)the strategic project of the Chinese Academy of Sciences(XDB05050000)
文摘The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.
基金supported by the National High Technology Research and Development Program 863 of China,No.2010AA064903National Natural Science Foundation of China(NSFC) No. 51002154
文摘Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50℃. The average diameter of the microspheres is -850 nm. The microspheres consist of a core of diameter of -800 nm and nanorods of width -50 nm. The nanorods exist at the edge of the core, The Brunauer-Emmett-Teller surface area of the sea-urchin-shaped microspheres is 259.4 m^2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 ℃.