期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Radio Frequency Fingerprinting Identification Using Semi-Supervised Learning with Meta Labels 被引量:1
1
作者 Tiantian Zhang Pinyi Ren +1 位作者 dongyang xu Zhanyi Ren 《China Communications》 SCIE CSCD 2023年第12期78-95,共18页
Radio frequency fingerprinting(RFF)is a remarkable lightweight authentication scheme to support rapid and scalable identification in the internet of things(IoT)systems.Deep learning(DL)is a critical enabler of RFF ide... Radio frequency fingerprinting(RFF)is a remarkable lightweight authentication scheme to support rapid and scalable identification in the internet of things(IoT)systems.Deep learning(DL)is a critical enabler of RFF identification by leveraging the hardware-level features.However,traditional supervised learning methods require huge labeled training samples.Therefore,how to establish a highperformance supervised learning model with few labels under practical application is still challenging.To address this issue,we in this paper propose a novel RFF semi-supervised learning(RFFSSL)model which can obtain a better performance with few meta labels.Specifically,the proposed RFFSSL model is constituted by a teacher-student network,in which the student network learns from the pseudo label predicted by the teacher.Then,the output of the student model will be exploited to improve the performance of teacher among the labeled data.Furthermore,a comprehensive evaluation on the accuracy is conducted.We derive about 50 GB real long-term evolution(LTE)mobile phone’s raw signal datasets,which is used to evaluate various models.Experimental results demonstrate that the proposed RFFSSL scheme can achieve up to 97%experimental testing accuracy over a noisy environment only with 10%labeled samples when training samples equal to 2700. 展开更多
关键词 meta labels parameters optimization physical-layer security radio frequency fingerprinting semi-supervised learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部