AIM:To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS:We performed a p...AIM:To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS:We performed a prospective blind com-parison of ARFI elastography,APRI index and FibroMax in a consecutive series of patients who underwent liver biopsy for CHC in University Hospital Bucharest. His-topathological staging of liver fibrosis according to the METAVIR scoring system served as the reference. A to-tal of 74 patients underwent ARFI elastography,APRI index,FibroMax and successful liver biopsy. RESULTS:The noninvasive tests had a good correlation with the liver biopsy results. The most powerful test in predicting fibrosis was ARFI elastography. The diagnostic accuracy of ARFI elastography,expressedas area under receiver operating characteristic curve (AUROC) had a validity of 90.2% (95% CI AUROC = 0.831-0.972,P < 0.001) for the diagnosis of significant f ibrosis (F ≥ 2). ARFI sonoelastography predicted even better F3 or F4 fibrosis (AUROC = 0.993,95% CI = 0.979-1).CONCLUSION:ARFI elastography had very good accuracy for the assessment of liver fibrosis and was superior to other noninvasive methods (APRI Index,FibroMax) for staging liver fibrosis.展开更多
In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called ...In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called "functional" or "idiopathic" disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of "functional" gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors' work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality.展开更多
Cardiovascular disease is the leading cause of human death worldwide. Autophagy is an evolutionarily conserved degradation pathway,which is a highly conserved cellular degradation process in which lysosomes decompose ...Cardiovascular disease is the leading cause of human death worldwide. Autophagy is an evolutionarily conserved degradation pathway,which is a highly conserved cellular degradation process in which lysosomes decompose their own organelles and recycle the resulting macromolecules.Autophagy is critical in maintaining cardiovascular homeostasis and function, and excessive or insufficient autophagy or autophagic flux can lead to cardiovascular disease. Enormous evidence indicates that exercise training plays a beneficial role in the prevention and treatment of cardiovascular diseases. The regulation of autophagy during exercise is a bidirectional process. For cardiovascular disease caused by either insufficient or excessive autophagy, exercise training restores normal autophagy function and delays the progression of cardiovascular disease.An in-depth exploration and discussion of exercise-mediated regulation of autophagy in the cardiovascular system can broaden our view about the prevention of various autophagy-related diseases through exercise training. In this article, we review autophagy and its related signaling pathways,as well as autophagy-dependent beneficial effects of exercise in cardiovascular system.展开更多
Cardiovascular diseases cause significant morbidity and mortality worldwide.Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development.These...Cardiovascular diseases cause significant morbidity and mortality worldwide.Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development.These organoids have applications in drug screening,cardiac disease models and regenerative medicine.Therefore,a thorough understanding of cardiac organoids and a comprehensive overview of their development are essential for cardiac tissue engineering.This review summarises different types of cardiac organoids used to explore cardiac function,including those based on co-culture,aggregation,scaffolds,and geometries.The self-assembly of monolayers,multilayers and aggravated cardiomyocytes forms biofunctional cell aggregates in cardiac organoids,elucidating the formation mechanism of scaffold-free cardiac organoids.In contrast,scaffolds such as decellularised extracellular matrices,three-dimensional hydrogels and bioprinting techniques provide a supportive framework for cardiac organoids,playing a crucial role in cardiac development.Different geometries are engineered to create cardiac organoids,facilitating the investigation of intrinsic communication between cardiac organoids and biomechanical pathways.Additionally,this review emphasises the relationship between cardiac organoids and the cardiac system,and evaluates their clinical applications.This review aims to provide valuable insights into the study of three-dimensional cardiac organoids and their clinical potential.展开更多
基金Supported by Grant 41066/2007, financed by the Ministry of Education and Research
文摘AIM:To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS:We performed a prospective blind com-parison of ARFI elastography,APRI index and FibroMax in a consecutive series of patients who underwent liver biopsy for CHC in University Hospital Bucharest. His-topathological staging of liver fibrosis according to the METAVIR scoring system served as the reference. A to-tal of 74 patients underwent ARFI elastography,APRI index,FibroMax and successful liver biopsy. RESULTS:The noninvasive tests had a good correlation with the liver biopsy results. The most powerful test in predicting fibrosis was ARFI elastography. The diagnostic accuracy of ARFI elastography,expressedas area under receiver operating characteristic curve (AUROC) had a validity of 90.2% (95% CI AUROC = 0.831-0.972,P < 0.001) for the diagnosis of significant f ibrosis (F ≥ 2). ARFI sonoelastography predicted even better F3 or F4 fibrosis (AUROC = 0.993,95% CI = 0.979-1).CONCLUSION:ARFI elastography had very good accuracy for the assessment of liver fibrosis and was superior to other noninvasive methods (APRI Index,FibroMax) for staging liver fibrosis.
文摘In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called "functional" or "idiopathic" disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of "functional" gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors' work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality.
基金supported by grants from the National Natural Science Foundation of China(81722008,91639101,and 81570362 to J.Xiao,and 81800358 to L.Wang)from the Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-09-E00042 to J.Xiao)+1 种基金from the Science and Technology Commission of Shanghai Municipality(17010500100 and 18410722200 to J.Xiao)from the development fund for Shanghai talents(to J.Xiao)。
文摘Cardiovascular disease is the leading cause of human death worldwide. Autophagy is an evolutionarily conserved degradation pathway,which is a highly conserved cellular degradation process in which lysosomes decompose their own organelles and recycle the resulting macromolecules.Autophagy is critical in maintaining cardiovascular homeostasis and function, and excessive or insufficient autophagy or autophagic flux can lead to cardiovascular disease. Enormous evidence indicates that exercise training plays a beneficial role in the prevention and treatment of cardiovascular diseases. The regulation of autophagy during exercise is a bidirectional process. For cardiovascular disease caused by either insufficient or excessive autophagy, exercise training restores normal autophagy function and delays the progression of cardiovascular disease.An in-depth exploration and discussion of exercise-mediated regulation of autophagy in the cardiovascular system can broaden our view about the prevention of various autophagy-related diseases through exercise training. In this article, we review autophagy and its related signaling pathways,as well as autophagy-dependent beneficial effects of exercise in cardiovascular system.
基金supported by National Natural Science Foundation of China(No.82302401 to YW)the grant from Science and Technology Commission of Shanghai Municipality(Nos.23410750100,20DZ2255400 and 21XD1421300 to JX)the“Dawn”Program of Shanghai Education Commission(No.19SG34 to JX).
文摘Cardiovascular diseases cause significant morbidity and mortality worldwide.Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development.These organoids have applications in drug screening,cardiac disease models and regenerative medicine.Therefore,a thorough understanding of cardiac organoids and a comprehensive overview of their development are essential for cardiac tissue engineering.This review summarises different types of cardiac organoids used to explore cardiac function,including those based on co-culture,aggregation,scaffolds,and geometries.The self-assembly of monolayers,multilayers and aggravated cardiomyocytes forms biofunctional cell aggregates in cardiac organoids,elucidating the formation mechanism of scaffold-free cardiac organoids.In contrast,scaffolds such as decellularised extracellular matrices,three-dimensional hydrogels and bioprinting techniques provide a supportive framework for cardiac organoids,playing a crucial role in cardiac development.Different geometries are engineered to create cardiac organoids,facilitating the investigation of intrinsic communication between cardiac organoids and biomechanical pathways.Additionally,this review emphasises the relationship between cardiac organoids and the cardiac system,and evaluates their clinical applications.This review aims to provide valuable insights into the study of three-dimensional cardiac organoids and their clinical potential.