Background:N6-methyladenosine(m^(6)A)and DNA 5-methylcytosine(5mC)methylation plays crucial roles in diverse biological processes,including skeletal muscle development and growth.Recent studies unveiled a potential li...Background:N6-methyladenosine(m^(6)A)and DNA 5-methylcytosine(5mC)methylation plays crucial roles in diverse biological processes,including skeletal muscle development and growth.Recent studies unveiled a potential link between these two systems,implicating the potential mechanism of coordinated transcriptional and post-transcrip-tional regulation in porcine prenatal myogenesis and postnatal skeletal muscle growth.Methods:Immunofluorescence and co-IP assays were carried out between the 5mC writers and m^(6)A writers to investigate the molecular basis underneath.Large-scale in-house transcriptomic data were compiled for applying weighted correlation network analysis(WGCNA)to identify the co-expression patterns of m^(6)A and 5mC regulators and their potential role in pig myogenesis.Whole-genome bisulfite sequencing(WGBS)and methylated RNA immu-noprecipitation sequencing(MeRIP-seq)were performed on the skeletal muscle samples from Landrace pigs at four postnatal growth stages(days 30,60,120 and 180).Results:Significantly correlated expression between 5mC writers and m^(6)A writers and co-occurrence of 5mC and m^(6)A modification were revealed from public datasets of C2C12 myoblasts.The protein-protein interactions between the DNA methylase and the m^(6)A methylase were observed in mouse myoblast cells.Further,by analyzing tran-scriptome data comprising 81 pig skeletal muscle samples across 27 developmental stages,we identified a 5mC/m^(6)A epigenetic module eigengene and decoded its potential functions in pre-or post-transcriptional regulation in postnatal skeletal muscle development and growth of pigs.Following integrative multi-omics analyses on the WGBS methylome data and MeRIP-seq data for both m^(6)A and gene expression profiles revealed a genome/transcriptome-wide correlated dynamics and co-occurrence of 5mC and m^(6)A modifications as a consequence of 5mC/m^(6)A crosstalk in the postnatal myogenesis progress of pigs.Last,we identified a group of myogenesis-related genes collaboratively regulated by both 5mC and m^(6)A modifications in postnatal skeletal muscle growth in pigs.Conclusions:Our study discloses a potential epigenetic mechanism in skeletal muscle development and provides a novel direction for animal breeding and drug development of related human muscle-related diseases.展开更多
In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and un...In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH.展开更多
Background During mammalian pre-implantation embryonic development(PED),the process of maternal-to-zygote transition(MZT)is well orchestrated by epigenetic modification and gene sequential expression,and it is related...Background During mammalian pre-implantation embryonic development(PED),the process of maternal-to-zygote transition(MZT)is well orchestrated by epigenetic modification and gene sequential expression,and it is related to the embryonic genome activation(EGA).During MZT,the embryos are sensitive to the environment and easy to arrest at this stage in vitro.However,the timing and regulation mechanism of EGA in buffaloes remain obscure.Results Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing(WGBS)to draw landscapes of transcription and DNA-methylation.Four typical developmental steps were classified during buffalo PED.Buffalo major EGA was identified at the 16-cell stage by the comprehensive analy-sis of gene expression and DNA methylation dynamics.By weighted gene co-expression network analysis,stage-spe-cific modules were identified during buffalo maternal-to-zygotic transition,and key signaling pathways and biological process events were further revealed.Programmed and continuous activation of these pathways was necessary for success of buffalo EGA.In addition,the hub gene,CDK1,was identified to play a critical role in buffalo EGA.Conclusions Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT.It will lay a foundation for improving the in vitro development of buffalo embryos.展开更多
Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from ...Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from the flue gas because of the large CO_(2) capture capacity and high selectivity.However,it is often limited by the equipment corrosion and the high desorption energy consumption,and adsorption of CO_(2) using solid adsorbents has been receiving more attention in recent years due to its simplicity and high efficiency.More recently,a great number of porous organic polymers(POPs)have been designed and constructed for CO_(2) capture,and they are proven promising solid adsorbents for CO_(2) capture due to their high Brunauer-Emmett-Teller(BET)surface area(SBET),adjustable pore size and easy functionalization.In particular,they usually have rigid skeleton,permanent porosity,and good physiochemical stability.In this review,we have a detailed review for the different POPs developed in recent years,not only the design strategy,but also the special structure for CO_(2) capture.The outlook of the opportunities and challenges of the POPs is also proposed.展开更多
Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed fi...Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed first-principle studies on the etching mechanism of Si3N4 in fluorocarbon/oxygen plasma.The feasibility of using fluorocarbon/oxygen plasma to etch Si3N4 while attaining close E/R to SiO2 through the complementary nitride to oxynitiride(SiOxNy)transformation has been identified.Such transformation involves two stages:N atom elimination and Si-O bond formation.By modeling the essential chemical reactions on the Si3N4 surface,we shed light upon the underlying mechanisms behind both stages.We simulated the N-elimination reactions involving the formation and desorption of NO and FNO molecules as well as the substitution with F atoms.We found that N atoms can be eliminated by forming NO molecules,especially with the assistance of F-substitution in Si-N bond breaking.The predicted O-additive energies indicates that forming SiOxNy structure after N-elimination is possible.Following that,the dependency of chemistries favoring either high E/R or active SiOxNy formation on the fluorocarbon/oxygen ratio was discussed.We hope that the work will build a foundation for future studies on pursuing all-in-one ON etch process via the surface modifications.展开更多
The continually increasing number of silicon oxide(SiO2)and nitride(Si3N4)layers in 3D-NAND offers both motivations and challenges for developing all-in-one plasma etch solutions for etching SiO2 and Si3N4 at a select...The continually increasing number of silicon oxide(SiO2)and nitride(Si3N4)layers in 3D-NAND offers both motivations and challenges for developing all-in-one plasma etch solutions for etching SiO2 and Si3N4 at a selectivity near unity while maintaining a high etch rate.This is essential for a simultaneous etch landing of all holes that differ in their respective SiO2 and Si3N4 layer numbers and dummy SiO2 thickness,and for a quick wafer turnover.Surface modification may be employed to make the SiO2 and Si3N4 layers closer in composition,either by converting Si3N4 to oxynitride(SiOxNy)[J.Micro.Manuf.1,20180102(2018)],or by converting SiO2 to SiOxNy,presented in this paper.We computationally demonstrate the feasibility of a nitridation-etch process for SiO2 in fluorocarbon/nitrogen-based plasma with molecular dynamics(MD)and quantum chemistry(QC)simulations.First,the nitridation via ion implantation is observed with MD,which replaces surface oxygen by nitrogen.Second,the reactions involving oxygen and silicon volatilization are energetically favorable per QC calculations.Finally,both MD and QC simulations indicate a synergy between fluorine and nitrogen etchants by enhancing each other’s reactivity with the SiO2 surface.These atomistic surface reaction mechanisms will offer insight for the development of robust engineering solutions for 3D-NAND fabrication.展开更多
基金supported by the Agricultural Science and Technology Innovation Program and The Elite Young Scientists Program of CAAS.ZT was supported by the National Natural Science Foundation of China(31830090)the Basic and Applied Basic Research Foundation of Guangdong province(2019B1515120059)+1 种基金the Shenzhen Dapeng New District Special Fund for Industry Development(KY20180114)the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202006).
文摘Background:N6-methyladenosine(m^(6)A)and DNA 5-methylcytosine(5mC)methylation plays crucial roles in diverse biological processes,including skeletal muscle development and growth.Recent studies unveiled a potential link between these two systems,implicating the potential mechanism of coordinated transcriptional and post-transcrip-tional regulation in porcine prenatal myogenesis and postnatal skeletal muscle growth.Methods:Immunofluorescence and co-IP assays were carried out between the 5mC writers and m^(6)A writers to investigate the molecular basis underneath.Large-scale in-house transcriptomic data were compiled for applying weighted correlation network analysis(WGCNA)to identify the co-expression patterns of m^(6)A and 5mC regulators and their potential role in pig myogenesis.Whole-genome bisulfite sequencing(WGBS)and methylated RNA immu-noprecipitation sequencing(MeRIP-seq)were performed on the skeletal muscle samples from Landrace pigs at four postnatal growth stages(days 30,60,120 and 180).Results:Significantly correlated expression between 5mC writers and m^(6)A writers and co-occurrence of 5mC and m^(6)A modification were revealed from public datasets of C2C12 myoblasts.The protein-protein interactions between the DNA methylase and the m^(6)A methylase were observed in mouse myoblast cells.Further,by analyzing tran-scriptome data comprising 81 pig skeletal muscle samples across 27 developmental stages,we identified a 5mC/m^(6)A epigenetic module eigengene and decoded its potential functions in pre-or post-transcriptional regulation in postnatal skeletal muscle development and growth of pigs.Following integrative multi-omics analyses on the WGBS methylome data and MeRIP-seq data for both m^(6)A and gene expression profiles revealed a genome/transcriptome-wide correlated dynamics and co-occurrence of 5mC and m^(6)A modifications as a consequence of 5mC/m^(6)A crosstalk in the postnatal myogenesis progress of pigs.Last,we identified a group of myogenesis-related genes collaboratively regulated by both 5mC and m^(6)A modifications in postnatal skeletal muscle growth in pigs.Conclusions:Our study discloses a potential epigenetic mechanism in skeletal muscle development and provides a novel direction for animal breeding and drug development of related human muscle-related diseases.
文摘In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH.
基金funded by the National Natural Science Foundation of China (31972996 and 32160790)Guangxi Bagui Scholar ProgramGuangxi Innovation-Driven Development Project (AA17204051)
文摘Background During mammalian pre-implantation embryonic development(PED),the process of maternal-to-zygote transition(MZT)is well orchestrated by epigenetic modification and gene sequential expression,and it is related to the embryonic genome activation(EGA).During MZT,the embryos are sensitive to the environment and easy to arrest at this stage in vitro.However,the timing and regulation mechanism of EGA in buffaloes remain obscure.Results Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing(WGBS)to draw landscapes of transcription and DNA-methylation.Four typical developmental steps were classified during buffalo PED.Buffalo major EGA was identified at the 16-cell stage by the comprehensive analy-sis of gene expression and DNA methylation dynamics.By weighted gene co-expression network analysis,stage-spe-cific modules were identified during buffalo maternal-to-zygotic transition,and key signaling pathways and biological process events were further revealed.Programmed and continuous activation of these pathways was necessary for success of buffalo EGA.In addition,the hub gene,CDK1,was identified to play a critical role in buffalo EGA.Conclusions Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT.It will lay a foundation for improving the in vitro development of buffalo embryos.
文摘Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from the flue gas because of the large CO_(2) capture capacity and high selectivity.However,it is often limited by the equipment corrosion and the high desorption energy consumption,and adsorption of CO_(2) using solid adsorbents has been receiving more attention in recent years due to its simplicity and high efficiency.More recently,a great number of porous organic polymers(POPs)have been designed and constructed for CO_(2) capture,and they are proven promising solid adsorbents for CO_(2) capture due to their high Brunauer-Emmett-Teller(BET)surface area(SBET),adjustable pore size and easy functionalization.In particular,they usually have rigid skeleton,permanent porosity,and good physiochemical stability.In this review,we have a detailed review for the different POPs developed in recent years,not only the design strategy,but also the special structure for CO_(2) capture.The outlook of the opportunities and challenges of the POPs is also proposed.
文摘Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed first-principle studies on the etching mechanism of Si3N4 in fluorocarbon/oxygen plasma.The feasibility of using fluorocarbon/oxygen plasma to etch Si3N4 while attaining close E/R to SiO2 through the complementary nitride to oxynitiride(SiOxNy)transformation has been identified.Such transformation involves two stages:N atom elimination and Si-O bond formation.By modeling the essential chemical reactions on the Si3N4 surface,we shed light upon the underlying mechanisms behind both stages.We simulated the N-elimination reactions involving the formation and desorption of NO and FNO molecules as well as the substitution with F atoms.We found that N atoms can be eliminated by forming NO molecules,especially with the assistance of F-substitution in Si-N bond breaking.The predicted O-additive energies indicates that forming SiOxNy structure after N-elimination is possible.Following that,the dependency of chemistries favoring either high E/R or active SiOxNy formation on the fluorocarbon/oxygen ratio was discussed.We hope that the work will build a foundation for future studies on pursuing all-in-one ON etch process via the surface modifications.
文摘The continually increasing number of silicon oxide(SiO2)and nitride(Si3N4)layers in 3D-NAND offers both motivations and challenges for developing all-in-one plasma etch solutions for etching SiO2 and Si3N4 at a selectivity near unity while maintaining a high etch rate.This is essential for a simultaneous etch landing of all holes that differ in their respective SiO2 and Si3N4 layer numbers and dummy SiO2 thickness,and for a quick wafer turnover.Surface modification may be employed to make the SiO2 and Si3N4 layers closer in composition,either by converting Si3N4 to oxynitride(SiOxNy)[J.Micro.Manuf.1,20180102(2018)],or by converting SiO2 to SiOxNy,presented in this paper.We computationally demonstrate the feasibility of a nitridation-etch process for SiO2 in fluorocarbon/nitrogen-based plasma with molecular dynamics(MD)and quantum chemistry(QC)simulations.First,the nitridation via ion implantation is observed with MD,which replaces surface oxygen by nitrogen.Second,the reactions involving oxygen and silicon volatilization are energetically favorable per QC calculations.Finally,both MD and QC simulations indicate a synergy between fluorine and nitrogen etchants by enhancing each other’s reactivity with the SiO2 surface.These atomistic surface reaction mechanisms will offer insight for the development of robust engineering solutions for 3D-NAND fabrication.