Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo...Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.展开更多
The continuous phase modulation(CPM)technique is widely used in range telemetry due to its high spectral efficiency and power efficiency.However,the demodulation performance of the traditional maximum likelihood seque...The continuous phase modulation(CPM)technique is widely used in range telemetry due to its high spectral efficiency and power efficiency.However,the demodulation performance of the traditional maximum likelihood sequence detection(MLSD)algorithm significantly deteriorates in non-ideal synchronization or fading channels.To address this issue,this work proposes a convolutional neural network(CNN)called the cascade parallel crossing network(CPCNet)to enhance the robustness of CPM signals demodulation.The CPCNet model employs a multiple parallel structure and feature fusion to extract richer features from CPM signals.This approach constructs feature maps at different levels,resulting in a more comprehensive training of the model and improved demodulation performance.Simulation results show that under Gaussian channel,the proposed CPCNet achieves the same bit error rate(BER)performance as MLSD method when there is no timing error,but with 1/4 symbol period timing error,the proposed method has 2 dB demodulation gain compared with CNN and convolutional long short-term memory deep neural network(CLDNN).In addition,under Rayleigh channel,the BER of the proposed method is reduced by 5%-87%compared to that of MLSD in the wide signal-to-noise ratio(SNR)region.展开更多
Due to high spectral efficiency and power efficiency, the continuous phase modulation(CPM) technique with constant envelop is widely used in range telemetry. How to improve the bit error rate(BER) performance of CPM a...Due to high spectral efficiency and power efficiency, the continuous phase modulation(CPM) technique with constant envelop is widely used in range telemetry. How to improve the bit error rate(BER) performance of CPM and keep a reasonable computational complexity is the key of the entire telemetry system and the focus of research and engineering design. In this paper, a reduced-state noncoherent maximum likelihood sequence detection(MLSD) method for CPM is proposed. In the proposed method, the criterion of noncoherent MLSD is derived for CPM when the carrier phase is unknown. A novel Viterbi algorithm(VA) with modified state vector is designed to simplify the implementation of noncoherent MLSD. Both analysis and numerical results show that the proposed method reduces the computational complexity significantly and does not need accurate carrier phase recovery, which overcomes the shortage of traditional MLSD method. Additionally, the proposed method exceeds the traditional MLSD method when carrier phase deviation exists.展开更多
基金supported by the Beijing Natural Science Foundation (L202003)National Natural Science Foundation of China (No. 31700479)。
文摘Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.
基金Supported by the Beijing Natural Science Foundation (L202003)。
文摘The continuous phase modulation(CPM)technique is widely used in range telemetry due to its high spectral efficiency and power efficiency.However,the demodulation performance of the traditional maximum likelihood sequence detection(MLSD)algorithm significantly deteriorates in non-ideal synchronization or fading channels.To address this issue,this work proposes a convolutional neural network(CNN)called the cascade parallel crossing network(CPCNet)to enhance the robustness of CPM signals demodulation.The CPCNet model employs a multiple parallel structure and feature fusion to extract richer features from CPM signals.This approach constructs feature maps at different levels,resulting in a more comprehensive training of the model and improved demodulation performance.Simulation results show that under Gaussian channel,the proposed CPCNet achieves the same bit error rate(BER)performance as MLSD method when there is no timing error,but with 1/4 symbol period timing error,the proposed method has 2 dB demodulation gain compared with CNN and convolutional long short-term memory deep neural network(CLDNN).In addition,under Rayleigh channel,the BER of the proposed method is reduced by 5%-87%compared to that of MLSD in the wide signal-to-noise ratio(SNR)region.
基金supported by the Fundamental Research Funds for the Central Universities ( BLX201623 )the National Natural Science Foundation of China ( 31700479)。
文摘Due to high spectral efficiency and power efficiency, the continuous phase modulation(CPM) technique with constant envelop is widely used in range telemetry. How to improve the bit error rate(BER) performance of CPM and keep a reasonable computational complexity is the key of the entire telemetry system and the focus of research and engineering design. In this paper, a reduced-state noncoherent maximum likelihood sequence detection(MLSD) method for CPM is proposed. In the proposed method, the criterion of noncoherent MLSD is derived for CPM when the carrier phase is unknown. A novel Viterbi algorithm(VA) with modified state vector is designed to simplify the implementation of noncoherent MLSD. Both analysis and numerical results show that the proposed method reduces the computational complexity significantly and does not need accurate carrier phase recovery, which overcomes the shortage of traditional MLSD method. Additionally, the proposed method exceeds the traditional MLSD method when carrier phase deviation exists.