期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Constraint and Mobility Change Analysis of Rubik’s Cube-inspired Reconfigurable Joints and Corresponding Parallel Mechanisms 被引量:2
1
作者 duanling li Pu Jia +2 位作者 Jiazhou li Dan Zhang Xianwen Kong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第5期51-61,共11页
The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constrai... The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constraint has good controllability,and the constructed parallel mechanism has more configurations and wider application range.This paper presents a reconfigurable axis(rA)joint inspired and evolved from Rubik’s Cubes,which have a unique feature of geometric and physical constraint of axes of joint.The effectiveness of the rA joint in the construction of the limb is analyzed,resulting in a change in mobility and topology of the parallel mechanism.The rA joint makes the angle among the three axes inside the groove changed arbitrarily.This change in mobility is completed by the case illustrated by a 3(rA)P(rA)reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations,pure rotations.The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors,leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint.The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases.The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments. 展开更多
关键词 Reciprocal screws Reconfigurable-axis(rA)joint Metamorphic parallel mechanism Constraint analysis
下载PDF
Experimental and Numerical Analysis of the Influence ofMicrochannel Size and Structure on Boiling Heat Transfer
2
作者 Ningbo Guo Xianming Gao +3 位作者 duanling li Jixing Zhang Penghui Yin Mengyi Hua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3061-3082,共22页
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ... Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel. 展开更多
关键词 MICROCHANNEL boiling heat transfer BUBBLE numerical simulation visual experiment
下载PDF
Workspace and Accuracy Analysis on a Novel 6‑UCU Bone‑attached Parallel Manipulator 被引量:3
3
作者 Kaijie Dong duanling li +3 位作者 Xingyu Xue Chang Xu Haowei Wang Xianming Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期148-160,共13页
With the increasingly more extensive application of the medical surgical robot in the clinic,higher requirements have been put forward for medical robots.The bone-attached robot,a popular orthopedic robot in recent ye... With the increasingly more extensive application of the medical surgical robot in the clinic,higher requirements have been put forward for medical robots.The bone-attached robot,a popular orthopedic robot in recent years,has a tendency of miniaturization and refinement.Thus,a bone-attached parallel manipulator(PM)based on 6-UCU(universalcylindrical-universal)configuration is proposed,which is characterized by small volume,compact structure,high precision and six-dimensional force feedback.To optimize the structure and make it more compact,the workspace of the 6-UCU PM is analyzed based on the analysis of three kinds of constraint,and workspace model is established through spherical coordinate search method.This study also analyzes the influence of structural parameters on workspace,which may contribute to improving the efficiency of design and ensuring small-sized robots possess relatively large workspace.Moreover,to improve the motion accuracy,an error modeling method is developed based on the structure of 6-UCU PMs.According to this established error model,the output pose error curves are drawn using MATLAB software when the structure parameters change,and the influence of the structure and pose parameters change on the output pose error of PMs is analyzed.The proposed research provides the instruction to design and analysis of small PMs such as bone-attached robots. 展开更多
关键词 Medical robot Bone-attached robot Parallel manipulator Workspace analysis Accuracy analysis
下载PDF
Design and Research of Form Controlled Planar Folding Mechanism based on 4D Printing Technology
4
作者 Wencai Zhang Zhenghao Ge duanling li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期281-293,共13页
The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a comp... The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems. 展开更多
关键词 Form-controlled mechanism Self-folding Smart materials 4D printing Morphing control
下载PDF
Design and analysis of a novel hinged boom based on cable drive 被引量:1
5
作者 Kaijie DONG duanling li +3 位作者 Qiuhong liN Hui QIU Qiang CONG Xiao li 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期592-606,共15页
Hinged booms are widely used in astrophysics missions;however,the trajectory and deployment velocity are difficult to control because they are usually driven by springs,which limits their application in narrow spaces.... Hinged booms are widely used in astrophysics missions;however,the trajectory and deployment velocity are difficult to control because they are usually driven by springs,which limits their application in narrow spaces.Thus,a novel hinged boom is highly required to achieve motion controllability.Through an equivalent substitution between the cable drive loop and the binary link in topology,a type synthesis method for the cable-driven single-degree-of-freedom chain is proposed based on the single-open-chain(SOC)adding method.According to the configuration design,a novel cable-driven hinged boom is proposed,aiming to achieve boom synchronism.Then,to preload easily,a method that preload is applied and measured at the cable ends is adopted and the relationship between the initial preload and the target preload is deduced.By analyzing the distribution of cable tension,a new stiffness model is proposed thus a stiffness equation is obtained.Finally,the dynamic simulation analysis and zero-gravity deployment experiment of the hinged boom is carried out to verify its reliability.This research provides a new way for the type synthesis of cable-driven single-degree-of-freedom chain and a new model for analyzing cable-driven stiffness.Moreover,the novel cable-driven hinged boom obtained in this study can be well-applied in the field of aerospace. 展开更多
关键词 Cable drive Deployable structure Dynamic simulation Hinged boom STIFFNESS Type synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部