The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C...The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.展开更多
Data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics.Typical applications span from computational fluid ...Data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics.Typical applications span from computational fluid dynamics(CFD)to geoscience and climate systems.Recently,much effort has been given in combining DA,UQ and machine learning(ML)techniques.These research efforts seek to address some critical challenges in high-dimensional dynamical systems,including but not limited to dynamical system identification,reduced order surrogate modelling,error covariance specification and model error correction.A large number of developed techniques and methodologies exhibit a broad applicability across numerous domains,resulting in the necessity for a comprehensive guide.This paper provides the first overview of state-of-the-art researches in this interdisciplinary field,covering a wide range of applications.This review is aimed at ML scientists who attempt to apply DA and UQ techniques to improve the accuracy and the interpretability of their models,but also at DA and UQ experts who intend to integrate cutting-edge ML approaches to their systems.Therefore,this article has a special focus on how ML methods can overcome the existing limits of DA and UQ,and vice versa.Some exciting perspectives of this rapidly developing research field are also discussed.Index Terms-Data assimilation(DA),deep learning,machine learning(ML),reduced-order-modelling,uncertainty quantification(UQ).展开更多
基金partially supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)+1 种基金EP/T000414/1 PREdictive Modeling with QuantIfication of UncERtainty for MultiphasE Systems(PREMIERE)the Leverhulme Centre for Wildfires,Environment,and Society through the Leverhulme Trust(No.RC-2018-023).
文摘The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.
基金the support of the Leverhulme Centre for Wildfires,Environment and Society through the Leverhulme Trust(RC-2018-023)Sibo Cheng,César Quilodran-Casas,and Rossella Arcucci acknowledge the support of the PREMIERE project(EP/T000414/1)+5 种基金the support of EPSRC grant:PURIFY(EP/V000756/1)the Fundamental Research Funds for the Central Universitiesthe support of the SASIP project(353)funded by Schmidt Futures–a philanthropic initiative that seeks to improve societal outcomes through the development of emerging science and technologiesDFG for the Heisenberg Programm Award(JA 1077/4-1)the National Natural Science Foundation of China(61976120)the Natural Science Key Foundat ion of Jiangsu Education Department(21KJA510004)。
文摘Data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics.Typical applications span from computational fluid dynamics(CFD)to geoscience and climate systems.Recently,much effort has been given in combining DA,UQ and machine learning(ML)techniques.These research efforts seek to address some critical challenges in high-dimensional dynamical systems,including but not limited to dynamical system identification,reduced order surrogate modelling,error covariance specification and model error correction.A large number of developed techniques and methodologies exhibit a broad applicability across numerous domains,resulting in the necessity for a comprehensive guide.This paper provides the first overview of state-of-the-art researches in this interdisciplinary field,covering a wide range of applications.This review is aimed at ML scientists who attempt to apply DA and UQ techniques to improve the accuracy and the interpretability of their models,but also at DA and UQ experts who intend to integrate cutting-edge ML approaches to their systems.Therefore,this article has a special focus on how ML methods can overcome the existing limits of DA and UQ,and vice versa.Some exciting perspectives of this rapidly developing research field are also discussed.Index Terms-Data assimilation(DA),deep learning,machine learning(ML),reduced-order-modelling,uncertainty quantification(UQ).