期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Requirement of a Homolog of Glucosidase Ⅱ β-Subunit for EFR-Mediated Defense Signaling in Arabidopsis thaliana 被引量:2
1
作者 Nina von Numers Mantas Survila +4 位作者 Markku Aalto Martine Batoux Pekka Heino e. tapio palva Jing Li 《Molecular Plant》 SCIE CAS CSCD 2010年第4期740-750,共11页
EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factorTu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to... EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factorTu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to the endoplasmic reticulum quality control (ERQC) machinery for the correct folding and proper assembly in order to reach its final destination. Genetic studies have demonstrated that ERD2b, a counterpart of the yeast or mammalian HDEL receptor ERD2 for retaining proteins in the endoplasmic reticulum (ER) lumen, is required for EFR function in plants (Li et al., 2009). In this study, we characterized the Arabidopsis glucosidase Ⅱ β--subunit via the H DEL motif against the non-redundant protein database. Data mining also revealed that the glucosidase Ⅱ β--subunit gene has a highly similar expression pattern to ERD2b and the other known ERQC components involved in EFR biogenesis. Importantly, the T-DNA insertion lines of the glucosidase Ⅱ β-subunit gene showed that EFR-controlled responses were substantially reduced or completely blocked in these mutants. The responses include seedling growth inhibition, induction of marker genes, MAP kinase activation, and callose deposition, trigged by peptide elf18, a full mimic of E F-Tu. Taken together, ourdata indicate a requirement of the glucosidase Ⅱ β-subunitfor EFR function. 展开更多
关键词 Arabidopsis thaliana glucosidase β-subunit endoplasmic reticulum quality control EFR innate immunity.
原文传递
Kunitz Trypsin Inhibitor: An Antagonist of Cell Death Triggered by Phytopathogens and Fumonisin B1 in Arabidopsis 被引量:4
2
作者 Jing Li Günter Brader e. tapio palva 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第3期482-495,共14页
Programmed cell death (PCD) is a central regulatory process in both plant development and in plant responses to pathogens. PCD requires a coordinate activation of pro-apoptotic factors such as proteases and suppress... Programmed cell death (PCD) is a central regulatory process in both plant development and in plant responses to pathogens. PCD requires a coordinate activation of pro-apoptotic factors such as proteases and suppressors inhibiting and modulating these processes. In plants, various caspase-like cysteine proteases as well as serine proteases have been implicated in PCD. Here, we show that a serine protease (Kunitz trypsin) inhibitor (KTI1) of Arabidopsis acts as a functional KTI when produced in bacteria and in planta. Expression of AtKTI1 is induced late in response to bacterial and fungal elicitors and to salicylic acid. RNAi silencing of the AtKTI1 gene results in enhanced lesion development after infiltration of leaf tissue with the PCD-eliciting fungal toxin fumonisin B1 (FB1) or the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000 carrying avrB (Pst avrB). Overexpression of AtKTI1 results in reduced lesion development after Pst avrB and FB1 infiltration. Interestingly, RNAi silencing of AtKTI1 leads to enhanced resistance to the virulent pathogen Erwinia carotovora subsp, carotovora SCC1, while overexpression of AtKTI1 leads to higher susceptibility towards this pathogen. Together, these data indicate that AtKTI1 is involved in modulating PCD in plant-pathogen interactions. 展开更多
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部