Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte...Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models...The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models such as speech understanding,emotion detection,home automation,and so on.If an image needs to be captioned,then the objects in that image,its actions and connections,and any silent feature that remains under-projected or missing from the images should be identified.The aim of the image captioning process is to generate a caption for image.In next step,the image should be provided with one of the most significant and detailed descriptions that is syntactically as well as semantically correct.In this scenario,computer vision model is used to identify the objects and NLP approaches are followed to describe the image.The current study develops aNatural Language Processing with Optimal Deep Learning Enabled Intelligent Image Captioning System(NLPODL-IICS).The aim of the presented NLPODL-IICS model is to produce a proper description for input image.To attain this,the proposed NLPODL-IICS follows two stages such as encoding and decoding processes.Initially,at the encoding side,the proposed NLPODL-IICS model makes use of Hunger Games Search(HGS)with Neural Search Architecture Network(NASNet)model.This model represents the input data appropriately by inserting it into a predefined length vector.Besides,during decoding phase,Chimp Optimization Algorithm(COA)with deeper Long Short Term Memory(LSTM)approach is followed to concatenate the description sentences 4436 CMC,2023,vol.74,no.2 produced by the method.The application of HGS and COA algorithms helps in accomplishing proper parameter tuning for NASNet and LSTM models respectively.The proposed NLPODL-IICS model was experimentally validated with the help of two benchmark datasets.Awidespread comparative analysis confirmed the superior performance of NLPODL-IICS model over other models.展开更多
Sentiment Analysis(SA)of natural language text is not only a challenging process but also gains significance in various Natural Language Processing(NLP)applications.The SA is utilized in various applications,namely,ed...Sentiment Analysis(SA)of natural language text is not only a challenging process but also gains significance in various Natural Language Processing(NLP)applications.The SA is utilized in various applications,namely,education,to improve the learning and teaching processes,marketing strategies,customer trend predictions,and the stock market.Various researchers have applied lexicon-related approaches,Machine Learning(ML)techniques and so on to conduct the SA for multiple languages,for instance,English and Chinese.Due to the increased popularity of the Deep Learning models,the current study used diverse configuration settings of the Convolution Neural Network(CNN)model and conducted SA for Hindi movie reviews.The current study introduces an Effective Improved Metaheuristics with Deep Learning(DL)-Enabled Sentiment Analysis for Movie Reviews(IMDLSA-MR)model.The presented IMDLSA-MR technique initially applies different levels of pre-processing to convert the input data into a compatible format.Besides,the Term Frequency-Inverse Document Frequency(TF-IDF)model is exploited to generate the word vectors from the pre-processed data.The Deep Belief Network(DBN)model is utilized to analyse and classify the sentiments.Finally,the improved Jellyfish Search Optimization(IJSO)algorithm is utilized for optimal fine-tuning of the hyperparameters related to the DBN model,which shows the novelty of the work.Different experimental analyses were conducted to validate the better performance of the proposed IMDLSA-MR model.The comparative study outcomes highlighted the enhanced performance of the proposed IMDLSA-MR model over recent DL models with a maximum accuracy of 98.92%.展开更多
Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at an...Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.展开更多
Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years.Both Machine Learning(ML)and Deep Learning(DL)classification models are useful in effective ident...Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years.Both Machine Learning(ML)and Deep Learning(DL)classification models are useful in effective identification and classification of cyberattacks.In addition,the involvement of hyper parameters in DL models has a significantly influence upon the overall performance of the classification models.In this background,the current study develops Intelligent Cybersecurity Classification using Chaos Game Optimization with Deep Learning(ICC-CGODL)Model.The goal of the proposed ICC-CGODL model is to recognize and categorize different kinds of attacks made upon data.Besides,ICC-CGODL model primarily performs min-max normalization process to normalize the data into uniform format.In addition,Bidirectional Gated Recurrent Unit(BiGRU)model is utilized for detection and classification of cyberattacks.Moreover,CGO algorithm is also exploited to adjust the hyper parameters involved in BiGRU model which is the novelty of current work.A wide-range of simulation analysis was conducted on benchmark dataset and the results obtained confirmed the significant performance of ICC-CGODL technique than the recent approaches.展开更多
Languages–independent text tokenization can aid in classification of languages with few sources.There is a global research effort to generate text classification for any language.Human text classification is a slow p...Languages–independent text tokenization can aid in classification of languages with few sources.There is a global research effort to generate text classification for any language.Human text classification is a slow procedure.Conse-quently,the text summary generation of different languages,using machine text classification,has been considered in recent years.There is no research on the machine text classification for many languages such as Czech,Rome,Urdu.This research proposes a cross-language text tokenization model using a Transformer technique.The proposed Transformer employs an encoder that has ten layers with self-attention encoding and a feedforward sublayer.This model improves the efficiency of text classification by providing a draft text classification for a number of documents.We also propose a novel Sub-Word tokenization model with frequent vocabulary usage in the documents.The Sub-Word Byte-Pair Tokenization technique(SBPT)utilizes the sharing of the vocabulary of one sentence with other sentences.The Sub-Word tokenization model enhances the performance of other Sub-Word tokenization models such pair encoding model by+10%using precision metric.展开更多
Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enha...Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enhanced incident avoidance and management should be top priorities in smart city management.At the same time,Vehicle License Plate Number Recognition(VLPNR)has become a hot research topic,owing to several real-time applications like automated toll fee processing,traffic law enforcement,private space access control,and road traffic surveillance.Automated VLPNR is a computer vision-based technique which is employed in the recognition of automobiles based on vehicle number plates.The current research paper presents an effective Deep Learning(DL)-based VLPNR called DLVLPNR model to identify and recognize the alphanumeric characters present in license plate.The proposed model involves two main stages namely,license plate detection and Tesseract-based character recognition.The detection of alphanumeric characters present in license plate takes place with the help of fast RCNN with Inception V2 model.Then,the characters in the detected number plate are extracted using Tesseract Optical Character Recognition(OCR)model.The performance of DL-VLPNR model was tested in this paper using two benchmark databases,and the experimental outcome established the superior performance of the model compared to other methods.展开更多
Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features.Several cloud-based IoT health providers have been described in the literature prev...Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features.Several cloud-based IoT health providers have been described in the literature previously.Furthermore,there are a number of issues related to time consumed and overall network performance when it comes to big data information.In the existing method,less performed optimization algorithms were used for optimizing the data.In the proposed method,the Chaotic Cuckoo Optimization algorithm was used for feature selection,and Convolutional Support Vector Machine(CSVM)was used.The research presents a method for analyzing healthcare information that uses in future prediction.The major goal is to take a variety of data while improving efficiency and minimizing process time.The suggested method employs a hybrid method that is divided into two stages.In the first stage,it reduces the features by using the Chaotic Cuckoo Optimization algorithm with Levy flight,opposition-based learning,and distributor operator.In the second stage,CSVM is used which combines the benefits of convolutional neural network(CNN)and SVM.The CSVM modifies CNN’s convolution product to learn hidden deep inside data sources.For improved economic flexibility,greater protection,greater analytics with confidentiality,and lower operating cost,the suggested approach is built on fog computing.Overall results of the experiments show that the suggested method can minimize the number of features in the datasets,enhances the accuracy by 82%,and decrease the time of the process.展开更多
The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure p...The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively.展开更多
Electroencephalography(EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition,drug effect detection,emotion ...Electroencephalography(EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition,drug effect detection,emotion categorization,seizure detection,etc.With the latest advances in deep learning(DL)models,it is possible to design an accurate and prompt EEG EyeState classification problem.In this view,this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification(CBADL-BEESC)model.The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState.The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors.In addition,extreme learning machine autoencoder(ELM-AE)model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.展开更多
Oral cancer is the most commonly occurring‘head and neck cancers’across the globe.Most of the oral cancer cases are diagnosed at later stages due to absence of awareness among public.Since earlier identification of ...Oral cancer is the most commonly occurring‘head and neck cancers’across the globe.Most of the oral cancer cases are diagnosed at later stages due to absence of awareness among public.Since earlier identification of disease is essential for improved outcomes,Artificial Intelligence(AI)and Machine Learning(ML)models are used in this regard.In this background,the current study introduces Artificial Intelligence with Deep Transfer Learning driven Oral Cancer detection and Classification Model(AIDTLOCCM).The primary goal of the proposed AIDTL-OCCM model is to diagnose oral cancer using AI and image processing techniques.The proposed AIDTL-OCCM model involves fuzzy-based contrast enhancement approach to perform data pre-processing.Followed by,the densely-connected networks(DenseNet-169)model is employed to produce a useful set of deep features.Moreover,Chimp Optimization Algorithm(COA)with Autoencoder(AE)model is applied for oral cancer detection and classification.Furthermore,COA is employed to determine optimal parameters involved in AE model.A wide range of experimental analyses was conducted on benchmark datasets and the results were investigated under several aspects.The extensive experimental analysis outcomes established the enhanced performance of AIDTLOCCM model compared to other approaches with a maximum accuracy of 90.08%.展开更多
Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis...Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis and prediction.Among the various disease,skin cancer was the wide variety of cancer,as well as enhances the endurance rate.In recent years,many skin cancer classification systems using machine and deep learning models have been developed for classifying skin tumors,including malignant melanoma(MM)and other skin cancers.However,accurate cancer detection was not performed with minimum time consumption.In order to address these existing problems,a novel Multidimensional Bregman Divergencive Feature Scaling Based Cophenetic Piecewise Regression Recurrent Deep Learning Classification(MBDFS-CPRRDLC)technique is introduced for detecting cancer at an earlier stage.The MBDFS-CPRRDLC performs skin cancer detection using different layers such as input,hidden,and output for feature selection and classification.The patient information is composed of IoT.The patient information was stored in mobile clouds server for performing predictive analytics.The collected data are sent to the recurrent deep learning classifier.In the first hidden layer,the feature selection process is carried out using the Multidimensional Bregman Divergencive Feature Scaling technique to find the significant features for disease identification resulting in decreases time consumption.Followed by,the disease classification is carried out in the second hidden layer using cophenetic correlative piecewise regression for analyzing the testing and training data.This process is repeatedly performed until the error gets minimized.In this way,disease classification is accurately performed with higher accuracy.Experimental evaluation is carried out for factors namely Accuracy,precision,recall,F-measure,as well as cancer detection time,by the amount of patient data.The observed result confirms that the proposed MBDFS-CPRRDLC technique increases accuracy as well as lesser cancer detection time compared to the conventional approaches.展开更多
Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks.Recently,Liu et al.(Quantum Information Processing 18(8):1-10,2019)proposed a mu...Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks.Recently,Liu et al.(Quantum Information Processing 18(8):1-10,2019)proposed a multi-party quantum key agreement protocol based on four-qubit cluster states was proposed.The aim of their protocol is to agree on a shared secret key among multiple remote participants.Liu et al.employed four-qubit cluster states to be the quantum resources and the X operation to securely share a secret key.In addition,Liu et al.’s protocol guarantees that each participant makes an equal contribution to the final key.The authors also claimed that the proposed protocol is secure against participant attack and dishonest participants cannot generate the final shared key alone.However,we show here that Liu et al.protocol is insecure against a collusive attack,where dishonest participants can retrieve the private inputs of a trustworthy participant without being caught.Additionally,the corresponding modifications are presented to address these security flaws in Liu et al.’s protocol.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43).
文摘Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the|Deanship of Scientific Research at Umm Al-Qura University|for supporting this work by Grant Code:(22UQU4310373DSR33).
文摘The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models such as speech understanding,emotion detection,home automation,and so on.If an image needs to be captioned,then the objects in that image,its actions and connections,and any silent feature that remains under-projected or missing from the images should be identified.The aim of the image captioning process is to generate a caption for image.In next step,the image should be provided with one of the most significant and detailed descriptions that is syntactically as well as semantically correct.In this scenario,computer vision model is used to identify the objects and NLP approaches are followed to describe the image.The current study develops aNatural Language Processing with Optimal Deep Learning Enabled Intelligent Image Captioning System(NLPODL-IICS).The aim of the presented NLPODL-IICS model is to produce a proper description for input image.To attain this,the proposed NLPODL-IICS follows two stages such as encoding and decoding processes.Initially,at the encoding side,the proposed NLPODL-IICS model makes use of Hunger Games Search(HGS)with Neural Search Architecture Network(NASNet)model.This model represents the input data appropriately by inserting it into a predefined length vector.Besides,during decoding phase,Chimp Optimization Algorithm(COA)with deeper Long Short Term Memory(LSTM)approach is followed to concatenate the description sentences 4436 CMC,2023,vol.74,no.2 produced by the method.The application of HGS and COA algorithms helps in accomplishing proper parameter tuning for NASNet and LSTM models respectively.The proposed NLPODL-IICS model was experimentally validated with the help of two benchmark datasets.Awidespread comparative analysis confirmed the superior performance of NLPODL-IICS model over other models.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR51).
文摘Sentiment Analysis(SA)of natural language text is not only a challenging process but also gains significance in various Natural Language Processing(NLP)applications.The SA is utilized in various applications,namely,education,to improve the learning and teaching processes,marketing strategies,customer trend predictions,and the stock market.Various researchers have applied lexicon-related approaches,Machine Learning(ML)techniques and so on to conduct the SA for multiple languages,for instance,English and Chinese.Due to the increased popularity of the Deep Learning models,the current study used diverse configuration settings of the Convolution Neural Network(CNN)model and conducted SA for Hindi movie reviews.The current study introduces an Effective Improved Metaheuristics with Deep Learning(DL)-Enabled Sentiment Analysis for Movie Reviews(IMDLSA-MR)model.The presented IMDLSA-MR technique initially applies different levels of pre-processing to convert the input data into a compatible format.Besides,the Term Frequency-Inverse Document Frequency(TF-IDF)model is exploited to generate the word vectors from the pre-processed data.The Deep Belief Network(DBN)model is utilized to analyse and classify the sentiments.Finally,the improved Jellyfish Search Optimization(IJSO)algorithm is utilized for optimal fine-tuning of the hyperparameters related to the DBN model,which shows the novelty of the work.Different experimental analyses were conducted to validate the better performance of the proposed IMDLSA-MR model.The comparative study outcomes highlighted the enhanced performance of the proposed IMDLSA-MR model over recent DL models with a maximum accuracy of 98.92%.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR11).
文摘Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/180/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R161)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR07).
文摘Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years.Both Machine Learning(ML)and Deep Learning(DL)classification models are useful in effective identification and classification of cyberattacks.In addition,the involvement of hyper parameters in DL models has a significantly influence upon the overall performance of the classification models.In this background,the current study develops Intelligent Cybersecurity Classification using Chaos Game Optimization with Deep Learning(ICC-CGODL)Model.The goal of the proposed ICC-CGODL model is to recognize and categorize different kinds of attacks made upon data.Besides,ICC-CGODL model primarily performs min-max normalization process to normalize the data into uniform format.In addition,Bidirectional Gated Recurrent Unit(BiGRU)model is utilized for detection and classification of cyberattacks.Moreover,CGO algorithm is also exploited to adjust the hyper parameters involved in BiGRU model which is the novelty of current work.A wide-range of simulation analysis was conducted on benchmark dataset and the results obtained confirmed the significant performance of ICC-CGODL technique than the recent approaches.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R113),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Languages–independent text tokenization can aid in classification of languages with few sources.There is a global research effort to generate text classification for any language.Human text classification is a slow procedure.Conse-quently,the text summary generation of different languages,using machine text classification,has been considered in recent years.There is no research on the machine text classification for many languages such as Czech,Rome,Urdu.This research proposes a cross-language text tokenization model using a Transformer technique.The proposed Transformer employs an encoder that has ten layers with self-attention encoding and a feedforward sublayer.This model improves the efficiency of text classification by providing a draft text classification for a number of documents.We also propose a novel Sub-Word tokenization model with frequent vocabulary usage in the documents.The Sub-Word Byte-Pair Tokenization technique(SBPT)utilizes the sharing of the vocabulary of one sentence with other sentences.The Sub-Word tokenization model enhances the performance of other Sub-Word tokenization models such pair encoding model by+10%using precision metric.
基金This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program。
文摘Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enhanced incident avoidance and management should be top priorities in smart city management.At the same time,Vehicle License Plate Number Recognition(VLPNR)has become a hot research topic,owing to several real-time applications like automated toll fee processing,traffic law enforcement,private space access control,and road traffic surveillance.Automated VLPNR is a computer vision-based technique which is employed in the recognition of automobiles based on vehicle number plates.The current research paper presents an effective Deep Learning(DL)-based VLPNR called DLVLPNR model to identify and recognize the alphanumeric characters present in license plate.The proposed model involves two main stages namely,license plate detection and Tesseract-based character recognition.The detection of alphanumeric characters present in license plate takes place with the help of fast RCNN with Inception V2 model.Then,the characters in the detected number plate are extracted using Tesseract Optical Character Recognition(OCR)model.The performance of DL-VLPNR model was tested in this paper using two benchmark databases,and the experimental outcome established the superior performance of the model compared to other methods.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features.Several cloud-based IoT health providers have been described in the literature previously.Furthermore,there are a number of issues related to time consumed and overall network performance when it comes to big data information.In the existing method,less performed optimization algorithms were used for optimizing the data.In the proposed method,the Chaotic Cuckoo Optimization algorithm was used for feature selection,and Convolutional Support Vector Machine(CSVM)was used.The research presents a method for analyzing healthcare information that uses in future prediction.The major goal is to take a variety of data while improving efficiency and minimizing process time.The suggested method employs a hybrid method that is divided into two stages.In the first stage,it reduces the features by using the Chaotic Cuckoo Optimization algorithm with Levy flight,opposition-based learning,and distributor operator.In the second stage,CSVM is used which combines the benefits of convolutional neural network(CNN)and SVM.The CSVM modifies CNN’s convolution product to learn hidden deep inside data sources.For improved economic flexibility,greater protection,greater analytics with confidentiality,and lower operating cost,the suggested approach is built on fog computing.Overall results of the experiments show that the suggested method can minimize the number of features in the datasets,enhances the accuracy by 82%,and decrease the time of the process.
文摘The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/180/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR04)The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.
文摘Electroencephalography(EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition,drug effect detection,emotion categorization,seizure detection,etc.With the latest advances in deep learning(DL)models,it is possible to design an accurate and prompt EEG EyeState classification problem.In this view,this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification(CBADL-BEESC)model.The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState.The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors.In addition,extreme learning machine autoencoder(ELM-AE)model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 1/322/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR06).
文摘Oral cancer is the most commonly occurring‘head and neck cancers’across the globe.Most of the oral cancer cases are diagnosed at later stages due to absence of awareness among public.Since earlier identification of disease is essential for improved outcomes,Artificial Intelligence(AI)and Machine Learning(ML)models are used in this regard.In this background,the current study introduces Artificial Intelligence with Deep Transfer Learning driven Oral Cancer detection and Classification Model(AIDTLOCCM).The primary goal of the proposed AIDTL-OCCM model is to diagnose oral cancer using AI and image processing techniques.The proposed AIDTL-OCCM model involves fuzzy-based contrast enhancement approach to perform data pre-processing.Followed by,the densely-connected networks(DenseNet-169)model is employed to produce a useful set of deep features.Moreover,Chimp Optimization Algorithm(COA)with Autoencoder(AE)model is applied for oral cancer detection and classification.Furthermore,COA is employed to determine optimal parameters involved in AE model.A wide range of experimental analyses was conducted on benchmark datasets and the results were investigated under several aspects.The extensive experimental analysis outcomes established the enhanced performance of AIDTLOCCM model compared to other approaches with a maximum accuracy of 90.08%.
基金This research is funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R194)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis and prediction.Among the various disease,skin cancer was the wide variety of cancer,as well as enhances the endurance rate.In recent years,many skin cancer classification systems using machine and deep learning models have been developed for classifying skin tumors,including malignant melanoma(MM)and other skin cancers.However,accurate cancer detection was not performed with minimum time consumption.In order to address these existing problems,a novel Multidimensional Bregman Divergencive Feature Scaling Based Cophenetic Piecewise Regression Recurrent Deep Learning Classification(MBDFS-CPRRDLC)technique is introduced for detecting cancer at an earlier stage.The MBDFS-CPRRDLC performs skin cancer detection using different layers such as input,hidden,and output for feature selection and classification.The patient information is composed of IoT.The patient information was stored in mobile clouds server for performing predictive analytics.The collected data are sent to the recurrent deep learning classifier.In the first hidden layer,the feature selection process is carried out using the Multidimensional Bregman Divergencive Feature Scaling technique to find the significant features for disease identification resulting in decreases time consumption.Followed by,the disease classification is carried out in the second hidden layer using cophenetic correlative piecewise regression for analyzing the testing and training data.This process is repeatedly performed until the error gets minimized.In this way,disease classification is accurately performed with higher accuracy.Experimental evaluation is carried out for factors namely Accuracy,precision,recall,F-measure,as well as cancer detection time,by the amount of patient data.The observed result confirms that the proposed MBDFS-CPRRDLC technique increases accuracy as well as lesser cancer detection time compared to the conventional approaches.
基金This project was financially supported by the Academy of Scientific Research and Technology(ASRT)in Egypt,under the project of Science Up,Grant no.6626.
文摘Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks.Recently,Liu et al.(Quantum Information Processing 18(8):1-10,2019)proposed a multi-party quantum key agreement protocol based on four-qubit cluster states was proposed.The aim of their protocol is to agree on a shared secret key among multiple remote participants.Liu et al.employed four-qubit cluster states to be the quantum resources and the X operation to securely share a secret key.In addition,Liu et al.’s protocol guarantees that each participant makes an equal contribution to the final key.The authors also claimed that the proposed protocol is secure against participant attack and dishonest participants cannot generate the final shared key alone.However,we show here that Liu et al.protocol is insecure against a collusive attack,where dishonest participants can retrieve the private inputs of a trustworthy participant without being caught.Additionally,the corresponding modifications are presented to address these security flaws in Liu et al.’s protocol.