This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission line...This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission lines from the grid to these localities is not viable, a good solution is <span>an</span><span> installation in these areas of standalone photovoltaic systems. The design process comprises the choice and dimensioning of the solar panels, the battery storage, DC-AC inverter, and mini transmission grid to the different homes. The design is for a 15 kW PV system including an economic evaluation and analysis using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Data on the average monthly solar radiation and temperature w</span><span>ere</span><span> obtained from various sources, including, Photovoltaic Geographical Information System (PVGIS) for Africa. From this data the study area receives a monthly average solar insolation of 6.16 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day with the worst month </span><span>being </span><span>August with 5.22 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day. The total daily electrical energy consumption is estimated to be about 72.525 kWh. Simulation results using HOMER software shows that the overall capital cost of the PV system components is $122,337, a replacement cost of $12,889 and an operation and maintenance cost of $29,946 over 10years. A financial analysis of the system showed that the design was both viable and sustainable with low maintenance cost</span><span>.</span>展开更多
Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving ...Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.展开更多
文摘This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission lines from the grid to these localities is not viable, a good solution is <span>an</span><span> installation in these areas of standalone photovoltaic systems. The design process comprises the choice and dimensioning of the solar panels, the battery storage, DC-AC inverter, and mini transmission grid to the different homes. The design is for a 15 kW PV system including an economic evaluation and analysis using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Data on the average monthly solar radiation and temperature w</span><span>ere</span><span> obtained from various sources, including, Photovoltaic Geographical Information System (PVGIS) for Africa. From this data the study area receives a monthly average solar insolation of 6.16 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day with the worst month </span><span>being </span><span>August with 5.22 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day. The total daily electrical energy consumption is estimated to be about 72.525 kWh. Simulation results using HOMER software shows that the overall capital cost of the PV system components is $122,337, a replacement cost of $12,889 and an operation and maintenance cost of $29,946 over 10years. A financial analysis of the system showed that the design was both viable and sustainable with low maintenance cost</span><span>.</span>
文摘Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.