The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a signifi...The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.展开更多
Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiati...Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO_2 conversion. Ceria (CeO_2)-titania (TiO_2) oxide supports of different compositions were employed and their effects on photothermal CO_2 conver- sion examined, Two factors are shown to be crucial for instigating photothermal CO_2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of C02 for its subsequent activation, Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO_2 adsorption subsequently invokes effective Dhotothermal CO_2 methanation when the ceria and titania are blended in the ideal ratio(s).展开更多
文摘The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.
基金financially supported by the Australian Research Council under the Laureate Fellowship Scheme (FL140100081)
文摘Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO_2 conversion. Ceria (CeO_2)-titania (TiO_2) oxide supports of different compositions were employed and their effects on photothermal CO_2 conver- sion examined, Two factors are shown to be crucial for instigating photothermal CO_2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of C02 for its subsequent activation, Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO_2 adsorption subsequently invokes effective Dhotothermal CO_2 methanation when the ceria and titania are blended in the ideal ratio(s).