Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam...Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.展开更多
The expansive clays are extremely sensitive to the slight moisture alteration,exhibiting sequentially volume change.Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challe...The expansive clays are extremely sensitive to the slight moisture alteration,exhibiting sequentially volume change.Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challenge that geotechnical engineers have to deal with.Therefore,the objective of this study is to assess the alteration in the compressibility behavior of expansive clay respecting partial replacement of cement by zeolite in cemented samples.For this purpose,7 and 28 d cured samples treated with 6%,8%,10%,and 12%cement addition and 0,10%,30%,50%,70%,and 90%cement replacement by zeolite were investigated through Atterberg limit and a series of one-dimensional consolidation tests to evaluate the consistency limits and compressibility alteration.The liquid limits of the soil samples indicated a decremental trend as the cement content rose.Afterward,the increase of zeolite replacement up to 30%in each specific cement content diminished liquid limit to its lowest value.Further increment of zeolite replacement increased the liquid limit of the soil-binder mixtures.The lowest plasticity index was also achieved at the 30%zeolite replacement percentage;hence,the lowest swelling potential would be resulted,concerning an indirect classification.The results of the consolidation experimentations disclosed that zeolite replacement had adverse influence on consolidation parameters of cemented samples such as compression index,swell index,coefficient of compressibility,coefficient of volume compressibility,and coefficient of consolidation after 7 d of curing whereas after 28 d of curing,the 30%zeolite-replaced samples represented the best consolidation parameters.Eventually,it can be stated that the addition of cement alongside the partial substitution of cement by zeolite can be a beneficial strategy for the geo-environmental targets of this study.展开更多
文摘Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.
文摘The expansive clays are extremely sensitive to the slight moisture alteration,exhibiting sequentially volume change.Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challenge that geotechnical engineers have to deal with.Therefore,the objective of this study is to assess the alteration in the compressibility behavior of expansive clay respecting partial replacement of cement by zeolite in cemented samples.For this purpose,7 and 28 d cured samples treated with 6%,8%,10%,and 12%cement addition and 0,10%,30%,50%,70%,and 90%cement replacement by zeolite were investigated through Atterberg limit and a series of one-dimensional consolidation tests to evaluate the consistency limits and compressibility alteration.The liquid limits of the soil samples indicated a decremental trend as the cement content rose.Afterward,the increase of zeolite replacement up to 30%in each specific cement content diminished liquid limit to its lowest value.Further increment of zeolite replacement increased the liquid limit of the soil-binder mixtures.The lowest plasticity index was also achieved at the 30%zeolite replacement percentage;hence,the lowest swelling potential would be resulted,concerning an indirect classification.The results of the consolidation experimentations disclosed that zeolite replacement had adverse influence on consolidation parameters of cemented samples such as compression index,swell index,coefficient of compressibility,coefficient of volume compressibility,and coefficient of consolidation after 7 d of curing whereas after 28 d of curing,the 30%zeolite-replaced samples represented the best consolidation parameters.Eventually,it can be stated that the addition of cement alongside the partial substitution of cement by zeolite can be a beneficial strategy for the geo-environmental targets of this study.