Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this...Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.展开更多
Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize the...Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize their produced energy. Then, that converter is linked to a voltage source inverter (VSI) that converts DC power to AC power. Vector control is used to control the VSI fed three phase induction motor driving the water pump. The Affinity laws are used to change the pump characteristics by changing the pump speed, and consequently, the pump flow rate, head, and power will be varied. In this paper, the Affinity laws are adapted to achieve the pump hydraulic requirements while the power delivered to the pump motor remains unchanged by constructing new pump curves. A Matlab/Simulink model of the PV pumping system is observed over a wide range of weather and loading conditions.展开更多
文摘Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.
文摘Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize their produced energy. Then, that converter is linked to a voltage source inverter (VSI) that converts DC power to AC power. Vector control is used to control the VSI fed three phase induction motor driving the water pump. The Affinity laws are used to change the pump characteristics by changing the pump speed, and consequently, the pump flow rate, head, and power will be varied. In this paper, the Affinity laws are adapted to achieve the pump hydraulic requirements while the power delivered to the pump motor remains unchanged by constructing new pump curves. A Matlab/Simulink model of the PV pumping system is observed over a wide range of weather and loading conditions.