The identification of stratigraphic'sweet-spot'interval is significant in oil and gas formation evaluation.However,formation evaluation in macroscopic-scale merely provides low resolution and limited infor-mat...The identification of stratigraphic'sweet-spot'interval is significant in oil and gas formation evaluation.However,formation evaluation in macroscopic-scale merely provides low resolution and limited infor-mation,thus may lead to uncertainties in resource estimation.To accurately identify the'sweet-spot'intervals amongst heterogeneous lithofacies,we conducted a very high-resolution and quantitative analysis from in-situ macroscopic scale to laboratory microscopic scale on the Goldwyer formation of Canning Basin,Western Australia.The comprehensive advanced well logging and slim-compact micro imager(SCMI)technologies were synthetically applied in couple with the laboratory nanoscaled ex-periments.The results unveiled an extraordinarily large lithofacies heterogeneity between different rock intervals,with distinguished features shown in Goldwyer Ⅰ,Ⅱ,and Ⅲ members.The most favorable lithofacies is recognized as the laminated argillaceous thermally-matured organic matter(OM)-rich mudstone,which is widely developed in Goldwyer Ⅲ as the major attributor to'sweet-spot'intervals.Goldwyer Ⅱ is exclusively characterized by thick mudstone intervals(94.4%),interbedded with thin calcareous mudstones(5.5%),corresponding to a depositional environment of low-energy distal section of the outer ramp settings.Microscopically,the most favorable lithofacies in'sweet-spot'intervals develop numerous OM-/mineral nanopores for hydrocarbon storage.Illite-rich lithofacies develops abundant inter-particle pores from 2 to 17 nm that mainly contribute to pore volume for free gas storage capacity.OM-rich lithofacies with higher maturity have OM-pores with good connectivity,bearing large specific surface area that is beneficial for adsorbed gas capacity.展开更多
基金Fundamental Research Programme of Yunnan Province(202201AU070041)the funding of Yunnan University Young Talent Programme(CZ21623201)+2 种基金the funding of State Key Laboratory of Coal Mine Disaster Dynamics and Control in Chongqing University(2011DA105287-FW202106)the funding from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,under the Institute of Geology in Chinese Academy of Geological Sciences,Beijing(J1901)Much gratitudes for the Department of Mines,Industry Regulation and Safety under the Government of Western Australia for granting us the core samples under Approval Nos.G32825&N00413。
文摘The identification of stratigraphic'sweet-spot'interval is significant in oil and gas formation evaluation.However,formation evaluation in macroscopic-scale merely provides low resolution and limited infor-mation,thus may lead to uncertainties in resource estimation.To accurately identify the'sweet-spot'intervals amongst heterogeneous lithofacies,we conducted a very high-resolution and quantitative analysis from in-situ macroscopic scale to laboratory microscopic scale on the Goldwyer formation of Canning Basin,Western Australia.The comprehensive advanced well logging and slim-compact micro imager(SCMI)technologies were synthetically applied in couple with the laboratory nanoscaled ex-periments.The results unveiled an extraordinarily large lithofacies heterogeneity between different rock intervals,with distinguished features shown in Goldwyer Ⅰ,Ⅱ,and Ⅲ members.The most favorable lithofacies is recognized as the laminated argillaceous thermally-matured organic matter(OM)-rich mudstone,which is widely developed in Goldwyer Ⅲ as the major attributor to'sweet-spot'intervals.Goldwyer Ⅱ is exclusively characterized by thick mudstone intervals(94.4%),interbedded with thin calcareous mudstones(5.5%),corresponding to a depositional environment of low-energy distal section of the outer ramp settings.Microscopically,the most favorable lithofacies in'sweet-spot'intervals develop numerous OM-/mineral nanopores for hydrocarbon storage.Illite-rich lithofacies develops abundant inter-particle pores from 2 to 17 nm that mainly contribute to pore volume for free gas storage capacity.OM-rich lithofacies with higher maturity have OM-pores with good connectivity,bearing large specific surface area that is beneficial for adsorbed gas capacity.