The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu?Al?Zn system were studied by Muggianu model and experiment, respectiv...The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu?Al?Zn system were studied by Muggianu model and experiment, respectively. The isothermal section of phase diagram at 293 K was calculated using Thermo-Calc software. Experiments were conducted by X-ray diffraction, light optic microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry, hardness and electrical conductivity measurements. The calculated values of thermodynamic properties indicate that Cu shows good miscibility with Al and Zn in all investigated alloys. The microstructural analysis of samples reveals that the structure consists of large and polygonal grains.展开更多
The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88...The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.展开更多
基金Projects(34005,172037)supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia
文摘The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu?Al?Zn system were studied by Muggianu model and experiment, respectively. The isothermal section of phase diagram at 293 K was calculated using Thermo-Calc software. Experiments were conducted by X-ray diffraction, light optic microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry, hardness and electrical conductivity measurements. The calculated values of thermodynamic properties indicate that Cu shows good miscibility with Al and Zn in all investigated alloys. The microstructural analysis of samples reveals that the structure consists of large and polygonal grains.
基金"Development of ecological knowledge-based advanced materials and technologies for multifunctional application" (Grant No.TR34005)"New approach to designing materials for energy conversion and storage" (Grant No.OI172060)"0-3D nanostructures for application in electronics and renewable energy sources:synthesis,characterisation and processing" (Grant No.III45007)
文摘The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.