期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metagenomic Insight Reveals the Microbial Structure and Function of the Full-Scale Coking Wastewater Treatment System:Gene-Based Nitrogen Removal
1
作者 Jiaying Ma Fan Wang +4 位作者 Haifeng Fan enchao li Huaqiang Chu Xuefei Zhou Yalei Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期76-89,共14页
Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still ... Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still lacking.A five month survey of four sequential bioreactors,anoxic 1/oxic 1/anoxic 2/oxic 2(A1/O1/A2/O2),was carried out in a full-scale CWW treatment system in China to elucidate operational performance and microbial ecology.The results showed that A1/O1/A2/O2 had excellent and stable performance for nitrogen removal.Both total nitrogen(TN;(17.38±6.89)mgL1)and ammonium-nitrogen(NH4 t-N;(2.10±1.34)mg·L^(-1))in the final biological effluent satisfied the Chinese national standards for CWW.Integrated analysis of 16S ribosome RNA(rRNA)sequencing and metagenomic sequencing showed that the bacterial communities and metagenomic function profiles of A1 and O1 shared similar functional structures,while those of A2 significantly varied from those of other bioreactors(p<0.05).The results indicated that microbial activity was strongly connected with activated sludge function.Nitrosospira,Nitrosomonas,and SM1A02 were responsible for nitrification during the primary anoxic-oxic(AO)stage and Azoarcus and Thauera acted as important denitrifiers in A2.Nitrogen cycling-related enzymes and genes work in the A1/O1/A2/O2 system.Moreover,the hao genes catalyzing hydroxylamine dehydrogenase(EC 1.7.2.6)and the napA and napB genes catalyzing nitrate reductase(EC 1.9.6.1)played important roles in the nitrification and denitrification processes in the primary and secondary AO stages,respectively.The mixed liquor suspended solids(MLSS)/total solids(TS),TN removal rate(RR),total organic carbon(TOC)(RR),and NH_(4)^(+)t-N(RR)were the most important environmental factors for regulating the structure of core bacterial genera and nitrogen-cycling genes.Proteobacteria were the potential main participants in nitrogen metabolism in the A1/O1/A2/O2 system for CWW treatment.This study provides an original and comprehensive understanding of the microbial community and functions at the gene level,which is crucial for the efficient and stable operation of the full-scale biological process for CWW treatment. 展开更多
关键词 Coking wastewater FULL-SCALE Microbial community Metagenomic sequencing Nitrogen-cycling genes Environmental factor
下载PDF
Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis 被引量:39
2
作者 Xuewen Jin enchao li +2 位作者 Shuguang Lu Zhaofu Qiu Qian Sui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第8期1565-1574,共10页
A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai... A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co. Ltd., was investigated to treat coking wastewater for industrial reuse over a period of one year. The removals reached 82.5% (COD), 89.6% (BOD), 99.8% (ammonium nitrogen), 99.9% (phenol), 44.6% (total cyanide (T-CN)), 99.7% (thiocyanide (SCN-)) and 8.9% (fluoride), during the A1/A2/O biological treatment stage, and all parameters were further reduced by over 96.0%, except for fluoride (86.4%), in the final discharge effluent from the currently operating plant. The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU, and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes. In addition, parameters including COD, T-CN, total nitrogen, fluoride, chloride ion, hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse, with a total water production ratio of 70.7%. However, the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged. 展开更多
关键词 coking wastewater industrial water reuse biological treatment MBR NF-RO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部