期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Switching Frequency Improvement of a High Speed on/off Valve Based on Pre-excitation Control Algorithm
1
作者 Qi Zhong Xiaotian Li +4 位作者 Yongxin Mao enguang xu Tiwei Jia Yanbiao Li Huayong Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期94-106,共13页
The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen... The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems. 展开更多
关键词 High speed on/off valve Switching frequency Pre-excitation Dynamic performance Switching duty ratio
下载PDF
Multi-objective optimization of a high speed on/off valve for dynamic performance improvement and volume minimization
2
作者 Qi ZHONG Junxian WANG +2 位作者 enguang xu Cheng YU Yanbiao LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期435-444,共10页
Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control s... Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV. 展开更多
关键词 High speed on/off valve Dynamic response VOLUME Multiobjective optimization NSGA-II genetic algorithm
原文传递
Dynamic performance and temperature rising characteristic of a high-speed on/off valve based on pre-excitation control algorithm 被引量:4
3
作者 Qi ZHONG enguang xu +2 位作者 Geng XIE Xiele WANG Yanbiao LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期445-458,共14页
High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance o... High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance of HSV,and affect the response speed and reliability of ADHS.Increasing the driving voltage is an effective method for improving the dynamic performance of HSV.However,continuous high voltage excitation will lead to more wasted energy,higher temperature rising and lower reliability.To solve this problem,a pre-excitation control algorithm(PECA)is proposed in this paper based on the theoretical model of the influence of electrical parameters on dynamic performance and temperature rising characteristics.In PECA,an appropriate initial coil current is generated by pre-excitation instead of increasing driving voltage,which significantly shortens the switching delay time.Then,based on real-time current online calculation and feedback mechanism,the adaptive switching of five equivalent voltages is realized.Consequently,the coil current can be rapidly kept at the expected state without consuming more energy and generating more heat.Results indicate that compared with conventional PWM control algorithm,the PECA can improve dynamic performance of HSV,shorten the total switching time by 71.5%,and increase the maximum operation frequency.Therefore,the linear area of flow characteristic is expended by 80.0%,the adjusting time of HSV-controlled system is reduced by 23%,while shortening steady error by 46.7%.Moreover,the temperature rising characteristics of HSV are better,the maximum operation temperature is reduced by 68.6%,and the time to reach the steady state temperature is shortened by 20%.From the results,it can be concluded that the PECA is not only an effective and practical control algorithm for improving the performance of HSVs and HSV-controlled systems while reducing the heat generation and decreasing the temperature rising of HSV,but also can be a potential solution in ADHS. 展开更多
关键词 High speed on/off valve Dynamic performance Pre-excitation Temperature rising Flow characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部