This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1...This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1</sup>(R<sup>n</sup>). First, we study the existence and uniqueness of solutions by a noise arising in a continuous random dynamical system and the asymptotic compactness is established by using uniform tail estimate technique, and then the existence of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity. As a motivation of our results, we prove an existence and upper semi-continuity of random attractors with respect to the nonlinearity that enters the system together with the noise.展开更多
In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
文摘This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1</sup>(R<sup>n</sup>). First, we study the existence and uniqueness of solutions by a noise arising in a continuous random dynamical system and the asymptotic compactness is established by using uniform tail estimate technique, and then the existence of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity. As a motivation of our results, we prove an existence and upper semi-continuity of random attractors with respect to the nonlinearity that enters the system together with the noise.
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.