This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the...This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.展开更多
Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temp...Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temperature and the Hubble constant. This allows us to predict the Hubble constant with much higher precision than before by using the CMB temperature. This is of great importance, since it will lead to much higher precision in various global parameters of the cosmos, such as the Hubble radius and the age of the universe. We have improved uncertainty in the Hubble constant all the way down to 66.8712 ± 0.0019 km/s/Mpc based on data from one of the most recent CMB studies. Previous studies based on other methods have rarely reported an uncertainty much less than approximately ±1 km/s/Mpc for the Hubble constant. Our deeper understanding of the CMB and its relation to H0seems to be opening a new era of high-precision cosmology, which may well be the key to solving the Hubble tension, as alluded to herein. Naturally, our results should also be scrutinized by other researchers over time, but we believe that, even at this stage, this deeper understanding of the CMB deserves attention from the research community.展开更多
This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper su...This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper summarizes the current state of quantum cosmology with respect to the Flat Space Cosmology (FSC) model. Although the FSC quantum cosmology formulae were published in 2018, they are only rearrangements and substitutions of the other assumptions into the original FSC Hubble temperature formula. In a real sense, this temperature formula was the first quantum cosmology formula developed since Hawking’s black hole temperature formula. A recent development in the last month proves that the FSC Hubble temperature formula can be derived from the Stephan-Boltzmann law. Thus, this Hubble temperature formula effectively unites some quantum developments with the general relativity model inherent in FSC. More progress towards unification in the near-future is expected.展开更多
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem....This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.展开更多
A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation...A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.展开更多
Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble tempe...Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble temperature and the maximum Planck temperature of the expanding universe over the course of cosmic time. This mathematical discovery suggests a re-consideration of Rh=ctcosmological models, including black hole cosmological models, even if it possibly could also be consistent with the Λ-CDM model. Most importantly, this paper contributes to the growing literature in the past year asserting a tightly constrained mathematical relationship between the CMB temperature, the Hubble constant, and other global parameters of the Hubble sphere. Our approach suggests a solid theoretical framework for predicting and understanding the CMB temperature rather than solely observing it.1.展开更多
This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is em...This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is emphasized and a rationale for this is given. Remarkably, the proposed solutions of this model have incorporated all 580 supernova redshifts in the Union2 database. Therefore, one can usefully apply this thermodynamic law in the form of a continually expanding black-body universe model. To our knowledge, no other cosmological model has achieved such high-precision observational correlation.展开更多
If confirmed, the new galactic observations in support of rapidly growing supermassive black holes in association with their production of dark energy may provide for a quantum leap forward in our understanding of bla...If confirmed, the new galactic observations in support of rapidly growing supermassive black holes in association with their production of dark energy may provide for a quantum leap forward in our understanding of black holes, dark energy, and universal expansion. The primary implication of these observations is that growth of black holes may well be coupled with universal expansion (“cosmological coupling”). Study of the Flat Space Cosmology (FSC) model, in conjunction with these new observations, suggests a novel mechanism of “black hole dark energy radiation”. This brief note gives a rationale for how the high gravitational energy density vacuum within or adjacent to a black hole horizon could be sufficiently energetic to pull entangled pairs of positive matter energy particles and negative dark energy “particles” of equal magnitude out of the horizon vacuum and send them off in opposite directions (i.e., gravitationally-attractive matter inward and gravitationally-repelling dark energy outward). One effect would be that a black hole can rapidly grow in mass-energy without mergers or the usual accretion of pre-existing matter. A second effect would be continual production of dark energy within the cosmic vacuum, fueling a continuous and finely-tuned light-speed expansion of the universe.展开更多
Following a brief review of the “black hole dark energy radiation” and “gravitized vacuum” references, a novel theory of how gravity might affect the quantum vacuum is proposed. This overarching theory proposes th...Following a brief review of the “black hole dark energy radiation” and “gravitized vacuum” references, a novel theory of how gravity might affect the quantum vacuum is proposed. This overarching theory proposes that the gravitational field of a sufficiently concentrated collection of matter and/or energy upregulates the virtual particle activity of the adjacent quantum vacuum, thus its energy density and lensing capacity. In contrast to general relativity, the particle and wave duality of quantum physics is necessary for understanding quantum vacuum gravitational effects. Very recent supporting and pending observational studies are discussed, including the ingenious and extremely sensitive vacuum scale to be deployed for the Archimedes Experiment. Support or falsification of this proposal may be imminent.展开更多
Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabula...Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabular and graphic form the “dark energy decay” curve which the HTC model predicts for cosmological redshifts covering the range of 0 - 2.0 z. Furthermore, we present the HTC model distance-vs-redshift curve in comparison to the three very different curves (for luminosity distance, angular diameter distance, and co-moving distance) calculated within the Lambda-CDM model. Whether the expansion of our universe is actually undergoing slight acceleration or the finely-tuned cosmic coasting at constant velocity of Rh = ct models, including HTC, will hopefully soon be answered by the many pending observational studies.展开更多
This brief note describes a method by which numerous empirically-determined quantum constants of nature can be substituted into Einstein’s field equation (EFE) for general relativity. This method involves treating th...This brief note describes a method by which numerous empirically-determined quantum constants of nature can be substituted into Einstein’s field equation (EFE) for general relativity. This method involves treating the ratio <em>G/<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ћ</span></span></span></span></em> as an empirical constant of nature in its own right. This ratio is repre- sented by a new symbol, <em>N</em><sub><em>T</em></sub>. It turns out that the value of <em>N</em><sub><em>T</em></sub> (which is 6.32891937 × 10<sup>23</sup> m<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>kg<sup>-2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>s<sup>-1</sup>) is within 5% of Avogadro’s number<em> N</em><sub><em>A</em></sub>, although the units are clearly different. Nevertheless, substitutions of <em>N</em><sub><em>T</em></sub> or <em>N</em><sub><em>A</em></sub> into the EFE, as shown, should yield an absolute value similar in magnitude to that calculated by the conventional EFE. The method described allows for quantum term EFE substitutions into Einstein’s gravitational constant <em>κ</em>. These terms include <em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ћ</span></span></span></span></em>, <em>α</em>, <em>m</em><sub><em>e</em></sub>, <em>m</em><sub><em>p</em></sub>, <em>R</em>, <em>k</em><sub><em>B</em></sub>, <em>F, e, M<sub>U</sub></em>, and <em>m</em><sub><em>U</em></sub>. More importantly, perhaps, one or more of the many new expressions given for <em>κ</em> may provide a more accurate result than <em>κ</em> incorporating <em>G</em>. If so, this may have important implications for additional forward progress towards unification. Whether any of these new expressions for Einstein’s field equation can move us closer to quantizing gravity remains to be determined.展开更多
Equations of Flat Space Cosmology (FSC) are utilized to characterize the model’s scalar temporal behavior of dark energy. A table relating cosmic age, cosmological redshift, and the temporal FSC Hubble parameter valu...Equations of Flat Space Cosmology (FSC) are utilized to characterize the model’s scalar temporal behavior of dark energy. A table relating cosmic age, cosmological redshift, and the temporal FSC Hubble parameter value is created. The resulting graph of the log of the Hubble parameter as a function of cosmological (or galactic) redshift has a particularly interesting sinuous shape. This graph greatly resembles what ΛCDM proponents have been expecting for a scalar temporal behavior of dark energy. And yet, the FSC <em>R</em><sub><em>h</em></sub><em> = ct </em>model expansion, by definition, neither decelerates nor accelerates. It may well be that apparent early cosmic deceleration and late cosmic acceleration both ultimately prove to be illusions produced by a constant-velocity, linearly-expanding, FSC universe. Furthermore, as discussed herein, the FSC model would appear to strongly support Freedman<em> et al.</em> in the current Hubble tension debate, if approximately 14 Gyrs can be assumed to be the current cosmic age.展开更多
Cosmologists have long ignored a stipulation by quantum field theorists that the vacuum pressure p corresponding to the zero-state vacuum energy must always be equal in magnitude to the vacuum energy density ρ...Cosmologists have long ignored a stipulation by quantum field theorists that the vacuum pressure p corresponding to the zero-state vacuum energy must always be equal in magnitude to the vacuum energy density ρ(i.e., p=ρ). Although general relativity stipulates the additional condition of proportionality between the vacuum gravitational field and (ρ+3p), the equation of state for the cosmic vacuum must fulfill both relativistic and quantum stipulations. This paper fully integrates Flat Space Cosmology (FSC) into the Friedmann equations containing a cosmological term, with interesting implications for the nature of dark energy, cosmic entropy and the entropic arrow of time. The FSC vacuum energy density is shown to be equal to the cosmic fluid bulk modulus at all times, thus meeting the quantum theory stipulation of (p=ρ). To date, FSC is the only viable dark energy cosmological model which has fully-integrated general relativity and quantum features.展开更多
Following recent Cosmic Microwave Background (CMB) observations of global spatial flatness, only two types of viable cosmological models remain: inflationary models which almost instantaneously attain cosmic flatness ...Following recent Cosmic Microwave Background (CMB) observations of global spatial flatness, only two types of viable cosmological models remain: inflationary models which almost instantaneously attain cosmic flatness following the Big Bang;and non-inflationary models which are spatially flat from inception. Flat Space Cosmology (FSC) is the latter type of cosmological model by virtue of assumptions corresponding to the Hawking-Penrose conjecture that a universe expanding from a singularity could be modeled like a time-reversed black hole. Since current inflationary models have been criticized for their lack of falsifiability, the numerous falsifiable predictions and key features of the FSC model are herein contrasted with standard inflationary cosmology. For the reasons given, the FSC model is shown to be superior to standard cosmology in the following eleven categories: Predictions Pertaining to Primordial Gravity Waves;Cosmic Dawn Early Surprises;Predicting the Magnitude of CMB Temperature Anisotropy;Predicting the Value of Equation of State Term w;Predicting the Hubble Parameter Value;Quantifiable Entropy and the Entropic Arrow of Time;Clues to the Nature of Gravity, Dark Energy and Dark Matter;The Cosmological Constant Problem;Quantum Cosmology;Dark Matter and Dark Energy Quantitation;Requirements for New Physics.展开更多
We present a new model of cosmology which appears to show great promise. Our flat space cosmology model, using only four basic and reasonable assumptions, derives highly accurate Hubble parameter H0, Hubble radius R0 ...We present a new model of cosmology which appears to show great promise. Our flat space cosmology model, using only four basic and reasonable assumptions, derives highly accurate Hubble parameter H0, Hubble radius R0 and total mass M0 values for our observable universe. Our model derives a current Hubble parameter of , in excellent agreement with the newly reported (lower limit) results of the 2015 Planck Survey. Remarkably, all of these derivations can be made with only these basic assumptions and the current CMB radiation temperature . The thermodynamic equations we have generated follow Hawking’s black hole temperature formula. We have also derived a variety of other useful cosmological formulae. These include angular velocity and other rotational formulae. A particularly useful hyperbolic equation, , has been derived, which appears to be an excellent fit for the Planck scale as well as the current observable universe scale. Using the flat space Minkowski relativistic formula for Doppler effect, and a formula for staging our cosmological model according to its average mass-energy density at every Hubble time (universal age) in its expansion, a persuasive argument can be made that the observable phenomena attributed to dark energy are actually manifestations of Doppler and gravitational redshift. Finally, a theory of cosmic inflation becomes completely unnecessary because our flat space cosmology model is always at critical density.展开更多
This paper integrates the Flat Space Cosmology (FSC) model into the Friedmann equations containing a cosmological term. The Lambda term within this model scales according to 3H2t/c2 and 3/R2t. Use of the Bekenstein-Ha...This paper integrates the Flat Space Cosmology (FSC) model into the Friedmann equations containing a cosmological term. The Lambda term within this model scales according to 3H2t/c2 and 3/R2t. Use of the Bekenstein-Hawking definition of closed gravitational system total entropy provides for FSC cosmic parameter definitions in terms of . Cosmic time, radius, total matter mass-energy and vacuum energy in this model scale in exactly the same way as . This analysis opens the way for understanding gravity, dark energy and dark matter as being deeply connected with cosmic entropy. The recent theoretical work of Roger Penrose and Erik Verlinde is discussed in this context. The results of this FSC model analysis dovetail nicely with Verlinde’s work suggesting gravity as being fundamentally an emergent property of cosmic entropy. This emergent-property-of-entropy definition of gravity, if true, would also indicate that gravitational inertia, dark matter and dark energy are simply manifestations of cosmic entropy. Thus, they would likely have no identifiable connection to quantum physics, including the standard particle model.展开更多
This paper, in conjunction with recent Flat Space Cosmology (FSC) publications, provides theoretical support for cosmic time being an emergent property of cosmic entropy and temperature. Therefore, if Verlinde’s “em...This paper, in conjunction with recent Flat Space Cosmology (FSC) publications, provides theoretical support for cosmic time being an emergent property of cosmic entropy and temperature. Therefore, if Verlinde’s “emergent gravity” theory is correct, both time and gravity are most fundamentally emergent properties of cosmic thermodynamics. Since emergent properties within complex systems with a huge number of degrees of freedom are often not definable at the smallest scales, these results suggest that quantum time and quantum gravity may be no more definable than consciousness within two connecting neurons. String theorists now struggling to define quantum space-time and quantum gravity should bear this in mind.展开更多
Realistic FLRW cosmic coasting models which contain matter now appear to be a reasonable alternative in explaining the accumulated Supernova Cosmology Project data since 1998. In sharp contrast to the unrealistic orig...Realistic FLRW cosmic coasting models which contain matter now appear to be a reasonable alternative in explaining the accumulated Supernova Cosmology Project data since 1998. In sharp contrast to the unrealistic original classic Milne universe, which was entirely devoid of matter, these modified Milne-type models containing matter, often referred to as realistic linear Rh = ct models, have rapidly become the primary competition with standard cosmology. This paper compares the expected relative luminosity distances and relative angular diameter distances for given magnitudes of redshift within these two competing models. A simple ratio formula is derived, which explains how expected luminosity distances and angular diameter distances for given magnitudes of redshift within a realistic Milne-type cosmic expansion could create the illusion (for standard model proponents) of cosmic acceleration where none exists.展开更多
The new C.G.S.I.S.A.H. theory of dark matter is used to appropriately classify and quantitate the previously-overlooked cold ground state neutral atomic hydrogen within the intergalactic vacuum. A surprising discovery...The new C.G.S.I.S.A.H. theory of dark matter is used to appropriately classify and quantitate the previously-overlooked cold ground state neutral atomic hydrogen within the intergalactic vacuum. A surprising discovery is demonstrated in the Results section that approximately one-fifth of the cosmic critical density can be attributable to intergalactic cold ground state neutral atomic hydrogen. By subtracting this quantity of the critical density from the dark energy ledger column and adding it to the total matter mass-energy ledger column, our current universe appears to be equally proportioned between total matter mass-energy and dark energy. This has been a longstanding prediction of the Flat Space Cosmology model.展开更多
The famous Dirac sea idea can be resurrected if one replaces the concept of positive and negative matter mass with positive and negative energy. Utilizing this concept, the perpetually spatially-flat matter-generating...The famous Dirac sea idea can be resurrected if one replaces the concept of positive and negative matter mass with positive and negative energy. Utilizing this concept, the perpetually spatially-flat matter-generating FSC model can be shown to be a realistic Milne “empty universe” model. Furthermore, this may be why Rh = ct cosmological models like FSC show an excellent statistical fit with the accumulated data of the Supernova Cosmology Project.展开更多
文摘This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.
文摘Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temperature and the Hubble constant. This allows us to predict the Hubble constant with much higher precision than before by using the CMB temperature. This is of great importance, since it will lead to much higher precision in various global parameters of the cosmos, such as the Hubble radius and the age of the universe. We have improved uncertainty in the Hubble constant all the way down to 66.8712 ± 0.0019 km/s/Mpc based on data from one of the most recent CMB studies. Previous studies based on other methods have rarely reported an uncertainty much less than approximately ±1 km/s/Mpc for the Hubble constant. Our deeper understanding of the CMB and its relation to H0seems to be opening a new era of high-precision cosmology, which may well be the key to solving the Hubble tension, as alluded to herein. Naturally, our results should also be scrutinized by other researchers over time, but we believe that, even at this stage, this deeper understanding of the CMB deserves attention from the research community.
文摘This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper summarizes the current state of quantum cosmology with respect to the Flat Space Cosmology (FSC) model. Although the FSC quantum cosmology formulae were published in 2018, they are only rearrangements and substitutions of the other assumptions into the original FSC Hubble temperature formula. In a real sense, this temperature formula was the first quantum cosmology formula developed since Hawking’s black hole temperature formula. A recent development in the last month proves that the FSC Hubble temperature formula can be derived from the Stephan-Boltzmann law. Thus, this Hubble temperature formula effectively unites some quantum developments with the general relativity model inherent in FSC. More progress towards unification in the near-future is expected.
文摘This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.
文摘A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.
文摘Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble temperature and the maximum Planck temperature of the expanding universe over the course of cosmic time. This mathematical discovery suggests a re-consideration of Rh=ctcosmological models, including black hole cosmological models, even if it possibly could also be consistent with the Λ-CDM model. Most importantly, this paper contributes to the growing literature in the past year asserting a tightly constrained mathematical relationship between the CMB temperature, the Hubble constant, and other global parameters of the Hubble sphere. Our approach suggests a solid theoretical framework for predicting and understanding the CMB temperature rather than solely observing it.1.
文摘This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is emphasized and a rationale for this is given. Remarkably, the proposed solutions of this model have incorporated all 580 supernova redshifts in the Union2 database. Therefore, one can usefully apply this thermodynamic law in the form of a continually expanding black-body universe model. To our knowledge, no other cosmological model has achieved such high-precision observational correlation.
文摘If confirmed, the new galactic observations in support of rapidly growing supermassive black holes in association with their production of dark energy may provide for a quantum leap forward in our understanding of black holes, dark energy, and universal expansion. The primary implication of these observations is that growth of black holes may well be coupled with universal expansion (“cosmological coupling”). Study of the Flat Space Cosmology (FSC) model, in conjunction with these new observations, suggests a novel mechanism of “black hole dark energy radiation”. This brief note gives a rationale for how the high gravitational energy density vacuum within or adjacent to a black hole horizon could be sufficiently energetic to pull entangled pairs of positive matter energy particles and negative dark energy “particles” of equal magnitude out of the horizon vacuum and send them off in opposite directions (i.e., gravitationally-attractive matter inward and gravitationally-repelling dark energy outward). One effect would be that a black hole can rapidly grow in mass-energy without mergers or the usual accretion of pre-existing matter. A second effect would be continual production of dark energy within the cosmic vacuum, fueling a continuous and finely-tuned light-speed expansion of the universe.
文摘Following a brief review of the “black hole dark energy radiation” and “gravitized vacuum” references, a novel theory of how gravity might affect the quantum vacuum is proposed. This overarching theory proposes that the gravitational field of a sufficiently concentrated collection of matter and/or energy upregulates the virtual particle activity of the adjacent quantum vacuum, thus its energy density and lensing capacity. In contrast to general relativity, the particle and wave duality of quantum physics is necessary for understanding quantum vacuum gravitational effects. Very recent supporting and pending observational studies are discussed, including the ingenious and extremely sensitive vacuum scale to be deployed for the Archimedes Experiment. Support or falsification of this proposal may be imminent.
文摘Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabular and graphic form the “dark energy decay” curve which the HTC model predicts for cosmological redshifts covering the range of 0 - 2.0 z. Furthermore, we present the HTC model distance-vs-redshift curve in comparison to the three very different curves (for luminosity distance, angular diameter distance, and co-moving distance) calculated within the Lambda-CDM model. Whether the expansion of our universe is actually undergoing slight acceleration or the finely-tuned cosmic coasting at constant velocity of Rh = ct models, including HTC, will hopefully soon be answered by the many pending observational studies.
文摘This brief note describes a method by which numerous empirically-determined quantum constants of nature can be substituted into Einstein’s field equation (EFE) for general relativity. This method involves treating the ratio <em>G/<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ћ</span></span></span></span></em> as an empirical constant of nature in its own right. This ratio is repre- sented by a new symbol, <em>N</em><sub><em>T</em></sub>. It turns out that the value of <em>N</em><sub><em>T</em></sub> (which is 6.32891937 × 10<sup>23</sup> m<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>kg<sup>-2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>s<sup>-1</sup>) is within 5% of Avogadro’s number<em> N</em><sub><em>A</em></sub>, although the units are clearly different. Nevertheless, substitutions of <em>N</em><sub><em>T</em></sub> or <em>N</em><sub><em>A</em></sub> into the EFE, as shown, should yield an absolute value similar in magnitude to that calculated by the conventional EFE. The method described allows for quantum term EFE substitutions into Einstein’s gravitational constant <em>κ</em>. These terms include <em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ћ</span></span></span></span></em>, <em>α</em>, <em>m</em><sub><em>e</em></sub>, <em>m</em><sub><em>p</em></sub>, <em>R</em>, <em>k</em><sub><em>B</em></sub>, <em>F, e, M<sub>U</sub></em>, and <em>m</em><sub><em>U</em></sub>. More importantly, perhaps, one or more of the many new expressions given for <em>κ</em> may provide a more accurate result than <em>κ</em> incorporating <em>G</em>. If so, this may have important implications for additional forward progress towards unification. Whether any of these new expressions for Einstein’s field equation can move us closer to quantizing gravity remains to be determined.
文摘Equations of Flat Space Cosmology (FSC) are utilized to characterize the model’s scalar temporal behavior of dark energy. A table relating cosmic age, cosmological redshift, and the temporal FSC Hubble parameter value is created. The resulting graph of the log of the Hubble parameter as a function of cosmological (or galactic) redshift has a particularly interesting sinuous shape. This graph greatly resembles what ΛCDM proponents have been expecting for a scalar temporal behavior of dark energy. And yet, the FSC <em>R</em><sub><em>h</em></sub><em> = ct </em>model expansion, by definition, neither decelerates nor accelerates. It may well be that apparent early cosmic deceleration and late cosmic acceleration both ultimately prove to be illusions produced by a constant-velocity, linearly-expanding, FSC universe. Furthermore, as discussed herein, the FSC model would appear to strongly support Freedman<em> et al.</em> in the current Hubble tension debate, if approximately 14 Gyrs can be assumed to be the current cosmic age.
文摘Cosmologists have long ignored a stipulation by quantum field theorists that the vacuum pressure p corresponding to the zero-state vacuum energy must always be equal in magnitude to the vacuum energy density ρ(i.e., p=ρ). Although general relativity stipulates the additional condition of proportionality between the vacuum gravitational field and (ρ+3p), the equation of state for the cosmic vacuum must fulfill both relativistic and quantum stipulations. This paper fully integrates Flat Space Cosmology (FSC) into the Friedmann equations containing a cosmological term, with interesting implications for the nature of dark energy, cosmic entropy and the entropic arrow of time. The FSC vacuum energy density is shown to be equal to the cosmic fluid bulk modulus at all times, thus meeting the quantum theory stipulation of (p=ρ). To date, FSC is the only viable dark energy cosmological model which has fully-integrated general relativity and quantum features.
文摘Following recent Cosmic Microwave Background (CMB) observations of global spatial flatness, only two types of viable cosmological models remain: inflationary models which almost instantaneously attain cosmic flatness following the Big Bang;and non-inflationary models which are spatially flat from inception. Flat Space Cosmology (FSC) is the latter type of cosmological model by virtue of assumptions corresponding to the Hawking-Penrose conjecture that a universe expanding from a singularity could be modeled like a time-reversed black hole. Since current inflationary models have been criticized for their lack of falsifiability, the numerous falsifiable predictions and key features of the FSC model are herein contrasted with standard inflationary cosmology. For the reasons given, the FSC model is shown to be superior to standard cosmology in the following eleven categories: Predictions Pertaining to Primordial Gravity Waves;Cosmic Dawn Early Surprises;Predicting the Magnitude of CMB Temperature Anisotropy;Predicting the Value of Equation of State Term w;Predicting the Hubble Parameter Value;Quantifiable Entropy and the Entropic Arrow of Time;Clues to the Nature of Gravity, Dark Energy and Dark Matter;The Cosmological Constant Problem;Quantum Cosmology;Dark Matter and Dark Energy Quantitation;Requirements for New Physics.
文摘We present a new model of cosmology which appears to show great promise. Our flat space cosmology model, using only four basic and reasonable assumptions, derives highly accurate Hubble parameter H0, Hubble radius R0 and total mass M0 values for our observable universe. Our model derives a current Hubble parameter of , in excellent agreement with the newly reported (lower limit) results of the 2015 Planck Survey. Remarkably, all of these derivations can be made with only these basic assumptions and the current CMB radiation temperature . The thermodynamic equations we have generated follow Hawking’s black hole temperature formula. We have also derived a variety of other useful cosmological formulae. These include angular velocity and other rotational formulae. A particularly useful hyperbolic equation, , has been derived, which appears to be an excellent fit for the Planck scale as well as the current observable universe scale. Using the flat space Minkowski relativistic formula for Doppler effect, and a formula for staging our cosmological model according to its average mass-energy density at every Hubble time (universal age) in its expansion, a persuasive argument can be made that the observable phenomena attributed to dark energy are actually manifestations of Doppler and gravitational redshift. Finally, a theory of cosmic inflation becomes completely unnecessary because our flat space cosmology model is always at critical density.
文摘This paper integrates the Flat Space Cosmology (FSC) model into the Friedmann equations containing a cosmological term. The Lambda term within this model scales according to 3H2t/c2 and 3/R2t. Use of the Bekenstein-Hawking definition of closed gravitational system total entropy provides for FSC cosmic parameter definitions in terms of . Cosmic time, radius, total matter mass-energy and vacuum energy in this model scale in exactly the same way as . This analysis opens the way for understanding gravity, dark energy and dark matter as being deeply connected with cosmic entropy. The recent theoretical work of Roger Penrose and Erik Verlinde is discussed in this context. The results of this FSC model analysis dovetail nicely with Verlinde’s work suggesting gravity as being fundamentally an emergent property of cosmic entropy. This emergent-property-of-entropy definition of gravity, if true, would also indicate that gravitational inertia, dark matter and dark energy are simply manifestations of cosmic entropy. Thus, they would likely have no identifiable connection to quantum physics, including the standard particle model.
文摘This paper, in conjunction with recent Flat Space Cosmology (FSC) publications, provides theoretical support for cosmic time being an emergent property of cosmic entropy and temperature. Therefore, if Verlinde’s “emergent gravity” theory is correct, both time and gravity are most fundamentally emergent properties of cosmic thermodynamics. Since emergent properties within complex systems with a huge number of degrees of freedom are often not definable at the smallest scales, these results suggest that quantum time and quantum gravity may be no more definable than consciousness within two connecting neurons. String theorists now struggling to define quantum space-time and quantum gravity should bear this in mind.
文摘Realistic FLRW cosmic coasting models which contain matter now appear to be a reasonable alternative in explaining the accumulated Supernova Cosmology Project data since 1998. In sharp contrast to the unrealistic original classic Milne universe, which was entirely devoid of matter, these modified Milne-type models containing matter, often referred to as realistic linear Rh = ct models, have rapidly become the primary competition with standard cosmology. This paper compares the expected relative luminosity distances and relative angular diameter distances for given magnitudes of redshift within these two competing models. A simple ratio formula is derived, which explains how expected luminosity distances and angular diameter distances for given magnitudes of redshift within a realistic Milne-type cosmic expansion could create the illusion (for standard model proponents) of cosmic acceleration where none exists.
文摘The new C.G.S.I.S.A.H. theory of dark matter is used to appropriately classify and quantitate the previously-overlooked cold ground state neutral atomic hydrogen within the intergalactic vacuum. A surprising discovery is demonstrated in the Results section that approximately one-fifth of the cosmic critical density can be attributable to intergalactic cold ground state neutral atomic hydrogen. By subtracting this quantity of the critical density from the dark energy ledger column and adding it to the total matter mass-energy ledger column, our current universe appears to be equally proportioned between total matter mass-energy and dark energy. This has been a longstanding prediction of the Flat Space Cosmology model.
文摘The famous Dirac sea idea can be resurrected if one replaces the concept of positive and negative matter mass with positive and negative energy. Utilizing this concept, the perpetually spatially-flat matter-generating FSC model can be shown to be a realistic Milne “empty universe” model. Furthermore, this may be why Rh = ct cosmological models like FSC show an excellent statistical fit with the accumulated data of the Supernova Cosmology Project.