Tumor cells escape host immune surveillance bydown-regulation of MHC and/or co-stimulatorymolecules.Anti-tumor immune responses are mediated primarily by T cells.A deficiency in either MHC or co-stimulatory molecules ...Tumor cells escape host immune surveillance bydown-regulation of MHC and/or co-stimulatorymolecules.Anti-tumor immune responses are mediated primarily by T cells.A deficiency in either MHC or co-stimulatory molecules on tumor cells is associated with a failure to induce anti-tumor immunity.展开更多
High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has b...High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has been difficult to measure,owing to large anisotropic backgrounds.We report a data-driven method for background evaluation and subtraction,exploiting the away-side pseudorapidity gaps,to measure the jetlike correlation shape in Au+Au collisions at √sNN=200 GeV in the STAR experiment.The correlation shapes,for trigger particles pT>3GeV/c and various associated particle pT ranges within 0.5<pT<10GeV/c,are consistent with Gaussians,and their widths increase with centrality.The results indicate jet broadening in the medium created in central heavy-ion collisions.展开更多
文摘Tumor cells escape host immune surveillance bydown-regulation of MHC and/or co-stimulatorymolecules.Anti-tumor immune responses are mediated primarily by T cells.A deficiency in either MHC or co-stimulatory molecules on tumor cells is associated with a failure to induce anti-tumor immunity.
文摘High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has been difficult to measure,owing to large anisotropic backgrounds.We report a data-driven method for background evaluation and subtraction,exploiting the away-side pseudorapidity gaps,to measure the jetlike correlation shape in Au+Au collisions at √sNN=200 GeV in the STAR experiment.The correlation shapes,for trigger particles pT>3GeV/c and various associated particle pT ranges within 0.5<pT<10GeV/c,are consistent with Gaussians,and their widths increase with centrality.The results indicate jet broadening in the medium created in central heavy-ion collisions.