Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propaga...Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propagating northwest on the continental shelf of the northwestern South China Sea (SCS). Corresponding to different stratification of the water column and tidal condition, both elevation and depression ISWs were observed at the same mooring location with amplitude of 35 m and 25 m respectively in different days. Regular arrival of the remarkable ISW packets at approximately the diurnal tidal period and the dominance of diurnal internal waves in the study area, strongly suggest that the main energy source of the waves is the diurnal tide. Notice that the wave packets were all riding on the troughs and shoulders of the internal tides, they were probably generated locally from the shelf break by the evolution of the internal tides due to nonlinear and dispersive effects.展开更多
Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal...Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.展开更多
In terms of the 2-dimensional hydrodynamic simplified model of a semi-elliptical submerged body moving horizontally at high speed, by using the full-spectrum model of SAR(synthetic aperture radar) remote sensing and...In terms of the 2-dimensional hydrodynamic simplified model of a semi-elliptical submerged body moving horizontally at high speed, by using the full-spectrum model of SAR(synthetic aperture radar) remote sensing and taking the effect of oceanic interior turbulence on surface gravity capillary waves into account, applying the k-ε model of turbulence with internal wave mixing, and adopthag the Nasmyth spectrum of oceanic turbulence, the 2-dimensional simulation model of SAR remote sensing of this semi-elliptical submerged body is built up. Simulation by using this model at X band and C band is made in the northeastern South China Sea (21°00' N, 119°00' E). Satisfactory results of the delay time and delay distance of turbulent surface wake of this semi-elliptical submerged body, as well as the minimum submerged depth at which this submerged body which cannot be discovered by SAR, are obtained through simulation.展开更多
The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) ...The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) equation under continuous stratification. More attention is paid to the effects of the ebb and flood background currents on the fission process of ISWs. This kind of background current is provided by the composed results simulated in terms of monthly mean baroclinic circulation and barotropic tidal current. It is found that the obtained relation of the number of fission solitons to the water depth and stratification is roughly in accordance with the fission law derived by Djordjevic and Redekopp in 1978; however, there exists obvious difference between the effects of the ebb and flood background currents on the wave-lengths of fission solitons (defined as the distance between two neighboring peaks of ISWs). The difference in nonlinearity coefficient a between the ebb and flood background currents is a main cause for the different wave-lengths of fission solitons.展开更多
On the basis of the theoretical research results by the author and the literature published up to date, the analysis and the justification presented in this paper show that the breaking products of oceanic internal wa...On the basis of the theoretical research results by the author and the literature published up to date, the analysis and the justification presented in this paper show that the breaking products of oceanic internal waves are not only turbulence, but also the fine-scale near-inertial internal waves (the oceanic reversible finestructure) for inertial waves and the internal solitary waves for internal tides respectively. It was found that the oceanic reversible finestructure may be induced by the effect of the horizontal component f (f = 2Ωcosφ) of the rotation vector on inertial waves. And a new instability of the theoretical shear and strain spectra due to the effect of f occurs at critical vertical wavenumber β c ≈ 0.1 cpm. It happens when the levels of shear and strain of the reversible finestructure are higher than those of inertial waves, which is induced by the effect of f along an "iso-potential-pycnal" of internal wave. If all breaking products of internal waves are taken into account, the average kinetic energy dissipation rate is an order of magnitude larger than the values of turbulence observed by microstructure measurements. The author’s theoretical research results are basically in agreement with those observed in IWEX, DRIFTER and PATCHEX experiments. An important impersonal fact is that on the mean temporal scale of thermohaline circulation these breaking products of internal waves exist simultaneously with turbulence. Because inertial waves are generated by winds at the surface, and internal tides are generated by strong tide-topography interactions, the analysis and justification in this paper support in principle the abyssal recipes Ⅱ:energetics of tidal and wind mixing by Munk Wunsch in 1998, in despite of the results of microstructure measurements for the turbulent kinetic energy dissipation rate and the diapycnal turbulent eddy diffusivity.展开更多
Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal wav...Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.展开更多
基金The Key Program of Knowledge Innovation Project of Chinese Academy of Sciences under contract No.KZCX1-YW-12the National 863 Program under contract Nos 2008AA09A401 and 2006AA09A109
文摘Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propagating northwest on the continental shelf of the northwestern South China Sea (SCS). Corresponding to different stratification of the water column and tidal condition, both elevation and depression ISWs were observed at the same mooring location with amplitude of 35 m and 25 m respectively in different days. Regular arrival of the remarkable ISW packets at approximately the diurnal tidal period and the dominance of diurnal internal waves in the study area, strongly suggest that the main energy source of the waves is the diurnal tide. Notice that the wave packets were all riding on the troughs and shoulders of the internal tides, they were probably generated locally from the shelf break by the evolution of the internal tides due to nonlinear and dispersive effects.
基金The National Natural Science Foundation of China under contract No.41275084the Key Program of National Natural Science Foundation of China under contract No.41030855
文摘Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.
基金This study was supported by the National High Technology Research and Development Project(“863”Program)of China under contract No.2002A-A633120.
文摘In terms of the 2-dimensional hydrodynamic simplified model of a semi-elliptical submerged body moving horizontally at high speed, by using the full-spectrum model of SAR(synthetic aperture radar) remote sensing and taking the effect of oceanic interior turbulence on surface gravity capillary waves into account, applying the k-ε model of turbulence with internal wave mixing, and adopthag the Nasmyth spectrum of oceanic turbulence, the 2-dimensional simulation model of SAR remote sensing of this semi-elliptical submerged body is built up. Simulation by using this model at X band and C band is made in the northeastern South China Sea (21°00' N, 119°00' E). Satisfactory results of the delay time and delay distance of turbulent surface wake of this semi-elliptical submerged body, as well as the minimum submerged depth at which this submerged body which cannot be discovered by SAR, are obtained through simulation.
基金supported by the Key Program of National Natural Science Foundation of China under contract No.41030855
文摘The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) equation under continuous stratification. More attention is paid to the effects of the ebb and flood background currents on the fission process of ISWs. This kind of background current is provided by the composed results simulated in terms of monthly mean baroclinic circulation and barotropic tidal current. It is found that the obtained relation of the number of fission solitons to the water depth and stratification is roughly in accordance with the fission law derived by Djordjevic and Redekopp in 1978; however, there exists obvious difference between the effects of the ebb and flood background currents on the wave-lengths of fission solitons (defined as the distance between two neighboring peaks of ISWs). The difference in nonlinearity coefficient a between the ebb and flood background currents is a main cause for the different wave-lengths of fission solitons.
基金The Key Program of National Natural Science Foundation of China under contract No.41030855
文摘On the basis of the theoretical research results by the author and the literature published up to date, the analysis and the justification presented in this paper show that the breaking products of oceanic internal waves are not only turbulence, but also the fine-scale near-inertial internal waves (the oceanic reversible finestructure) for inertial waves and the internal solitary waves for internal tides respectively. It was found that the oceanic reversible finestructure may be induced by the effect of the horizontal component f (f = 2Ωcosφ) of the rotation vector on inertial waves. And a new instability of the theoretical shear and strain spectra due to the effect of f occurs at critical vertical wavenumber β c ≈ 0.1 cpm. It happens when the levels of shear and strain of the reversible finestructure are higher than those of inertial waves, which is induced by the effect of f along an "iso-potential-pycnal" of internal wave. If all breaking products of internal waves are taken into account, the average kinetic energy dissipation rate is an order of magnitude larger than the values of turbulence observed by microstructure measurements. The author’s theoretical research results are basically in agreement with those observed in IWEX, DRIFTER and PATCHEX experiments. An important impersonal fact is that on the mean temporal scale of thermohaline circulation these breaking products of internal waves exist simultaneously with turbulence. Because inertial waves are generated by winds at the surface, and internal tides are generated by strong tide-topography interactions, the analysis and justification in this paper support in principle the abyssal recipes Ⅱ:energetics of tidal and wind mixing by Munk Wunsch in 1998, in despite of the results of microstructure measurements for the turbulent kinetic energy dissipation rate and the diapycnal turbulent eddy diffusivity.
基金supported by the Key Program of the National Natural Science Foundation of China under contract No.41030855
文摘Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.