The advances in understanding the South China Sea (SCS) western boundary current (SCSwbc) have been reviewed since the works of Dale (1956) and Wyrtki (1961) in the middle of the 20th century. The features of ...The advances in understanding the South China Sea (SCS) western boundary current (SCSwbc) have been reviewed since the works of Dale (1956) and Wyrtki (1961) in the middle of the 20th century. The features of the pattern of SCSwbc and the oceanic phenomena associated with it are focused on. The current is driven mainly by monsoon over the SCS and partially by winds over the tropical Pacific governed by the island rule. The SCSwbc exhibits strong seasonal variation in its direction and patterns. In winter, the current is strong and flows southwestward along the South China shelf and slope from the east of Dongsha Islands to the northern central Vietnamese coast, then turns to the south along the central and southern Vietnamese coast, and finally partially exits the SCS through the Karimata Strait. In summer and early fall, the SCSwbc can be divided into three segments based on their characteristics. The southern segment is stable, flowing northward from the Karimata Strait up to about 11 N, where it separates from the coast forming an eastward offshore current. The separation of the current from Vietnamese coast induces some striking features, such as upwelling and cold sea-surface temperature. The middle segment off the central Vietnamese coast may have a bimodal behavior: northward coastal current and meandering current in early summer (June–July), and cyclonic gyre in later summer and early fall (August–September). The northern segment is featured by the summer SCS Warm Current on the South China shelf and a southwestward subsurface current along the continental slope.展开更多
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using ...Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.展开更多
In this paper, we demonstrate the characteris- tics of strong internal solitons at the southern edge of Dong- sha Islands in the northern South China Sea (SCS) during May―June 1998, using in situ time series data fro...In this paper, we demonstrate the characteris- tics of strong internal solitons at the southern edge of Dong- sha Islands in the northern South China Sea (SCS) during May―June 1998, using in situ time series data from the con- ductivity temperature depth (CTD), acoustic Doppler current profiler (ADCP) and thermistor chain. Our measurements indicated that the strongest internal solitons were larger than 90 m in wave amplitude, and propagated approximately westward in traveling direction, with the maximum current speed of about 2 m/s and the period of 10―20 min. The strongest internal solitons occurred noticeably during May 14―16, 1998, which is consistent with the occurrence period of the diurnal-dominated spring internal tides.展开更多
11-year satellite altimeter sea surface height (SSH) anomaly data from January 1993 to December 2003 are used to present the dominant spatial patterns and temporal variations of the South China Sea (SCS) surface circu...11-year satellite altimeter sea surface height (SSH) anomaly data from January 1993 to December 2003 are used to present the dominant spatial patterns and temporal variations of the South China Sea (SCS) surface circulation through Empirical Orthogonal Function (EOF) analysis. The first three EOF modes show the obvious seasonal variations of SSH in the SCS. EOF mode one is generally characterized by a basin-wide circulation. Mode two describes the double-cell basin scale circulation structure. The two cells were located off west of the Luzon Island and southeast of Vietnam, respectively. EOF mode three presents the mesoscale eddy structure in the western SCS, which develops into a strong cyclonic eddy rapidly from July to September. EOF mode one and mode three are also embedded with interannual signals, indicating that the SCS surface circulation variation is influenced by El Ni o events prominently. The strong El Ni o of 1997/98 obviously changed the SCS circulation structure. This study also shows that there existed a series of mesoscale eddies in the western SCS, and their temporal variation indicates intra-seasonal and in-terannual signals.展开更多
CTD data from two oceanographic survey cruises, conducted by "Shiyan No.3" R/V during two reversing monsoons, were employed to calculate and analyze the distributions of temperature, salinity and geopotentia...CTD data from two oceanographic survey cruises, conducted by "Shiyan No.3" R/V during two reversing monsoons, were employed to calculate and analyze the distributions of temperature, salinity and geopotential anomaly in the southern South China Sea (SSCS). Based on these distributions, the horizontal structures of the SSCS circulation are described systematically. Study results show that the SSCS circulation structure could be classified as a two-layer (the upper and the lower) pattern, and that the main circulation in the upper layer (0-400 m) is driven by the South China Sea monsoons and is opposite in direction to the reversal of the monsoons. The distributions of principal current systems and their features are presented. Two important local phenomena, local eddy and oceanic front, were observed.展开更多
基金The National Basic Research Program ("973" Program) of China under contract Nos 2011CB403500 and 2012CB957803the National Natural Science Foundation of China under contract Nos 41006018 and 40730842the National High Technology Research and Development Program ("863" Program) of China under contract No. 2008AA09A402
文摘The advances in understanding the South China Sea (SCS) western boundary current (SCSwbc) have been reviewed since the works of Dale (1956) and Wyrtki (1961) in the middle of the 20th century. The features of the pattern of SCSwbc and the oceanic phenomena associated with it are focused on. The current is driven mainly by monsoon over the SCS and partially by winds over the tropical Pacific governed by the island rule. The SCSwbc exhibits strong seasonal variation in its direction and patterns. In winter, the current is strong and flows southwestward along the South China shelf and slope from the east of Dongsha Islands to the northern central Vietnamese coast, then turns to the south along the central and southern Vietnamese coast, and finally partially exits the SCS through the Karimata Strait. In summer and early fall, the SCSwbc can be divided into three segments based on their characteristics. The southern segment is stable, flowing northward from the Karimata Strait up to about 11 N, where it separates from the coast forming an eastward offshore current. The separation of the current from Vietnamese coast induces some striking features, such as upwelling and cold sea-surface temperature. The middle segment off the central Vietnamese coast may have a bimodal behavior: northward coastal current and meandering current in early summer (June–July), and cyclonic gyre in later summer and early fall (August–September). The northern segment is featured by the summer SCS Warm Current on the South China shelf and a southwestward subsurface current along the continental slope.
基金Supported by the National Natural Science Foundation of China(Nos.41306026,41176025,41176031)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2008014)+2 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104)the Global Change and Ocean-Atmosphere Interaction(No.GASI-03-01-01-03)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.40376002)Science Foundation of Guangdong Province(Grant No.021566)the project of SCSMEX.
文摘In this paper, we demonstrate the characteris- tics of strong internal solitons at the southern edge of Dong- sha Islands in the northern South China Sea (SCS) during May―June 1998, using in situ time series data from the con- ductivity temperature depth (CTD), acoustic Doppler current profiler (ADCP) and thermistor chain. Our measurements indicated that the strongest internal solitons were larger than 90 m in wave amplitude, and propagated approximately westward in traveling direction, with the maximum current speed of about 2 m/s and the period of 10―20 min. The strongest internal solitons occurred noticeably during May 14―16, 1998, which is consistent with the occurrence period of the diurnal-dominated spring internal tides.
基金Acknowledgements The satellite altimeter data were provided by AVIS0, CNES, France. This work was supported by the Ministry of Science and Technology of China through the National Basic Research Program (Grant No. 2006CB403603), the National Natural Science Foundation of China (Grant Nos. 40376002, 40520140074 and 40136010), Science Foundation of Guangdong Province (Grant No. 05003688).
文摘11-year satellite altimeter sea surface height (SSH) anomaly data from January 1993 to December 2003 are used to present the dominant spatial patterns and temporal variations of the South China Sea (SCS) surface circulation through Empirical Orthogonal Function (EOF) analysis. The first three EOF modes show the obvious seasonal variations of SSH in the SCS. EOF mode one is generally characterized by a basin-wide circulation. Mode two describes the double-cell basin scale circulation structure. The two cells were located off west of the Luzon Island and southeast of Vietnam, respectively. EOF mode three presents the mesoscale eddy structure in the western SCS, which develops into a strong cyclonic eddy rapidly from July to September. EOF mode one and mode three are also embedded with interannual signals, indicating that the SCS surface circulation variation is influenced by El Ni o events prominently. The strong El Ni o of 1997/98 obviously changed the SCS circulation structure. This study also shows that there existed a series of mesoscale eddies in the western SCS, and their temporal variation indicates intra-seasonal and in-terannual signals.
文摘CTD data from two oceanographic survey cruises, conducted by "Shiyan No.3" R/V during two reversing monsoons, were employed to calculate and analyze the distributions of temperature, salinity and geopotential anomaly in the southern South China Sea (SSCS). Based on these distributions, the horizontal structures of the SSCS circulation are described systematically. Study results show that the SSCS circulation structure could be classified as a two-layer (the upper and the lower) pattern, and that the main circulation in the upper layer (0-400 m) is driven by the South China Sea monsoons and is opposite in direction to the reversal of the monsoons. The distributions of principal current systems and their features are presented. Two important local phenomena, local eddy and oceanic front, were observed.