To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The p...To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.展开更多
Modeling is the kernel part of a digital reactor system. As an extensible platformfor reactor conceptual design, it is very important to study modeling technology and develop somekind of tools to speed up preparation ...Modeling is the kernel part of a digital reactor system. As an extensible platformfor reactor conceptual design, it is very important to study modeling technology and develop somekind of tools to speed up preparation of all classical computing models. This paper introducesthe background of the project and basic conception of digital reactor. MCAM is taken as anexample for modeling and its related technologies used are given. It is an interface program forMCNP geometry model developed by FDS team (ASIPP & HUT), and designed to run on windowssystem. MCAM aims at utilizing CAD technology to facilitate creation of MCNP geometry model.There have been two ways for MCAM to utilize CAD technology: (1) Making use of user interfacetechnology in aid of generation of MCNP geometry model; (2) Making use of existing 3D CADmodel to accelerate creation of MCNP geometry model. This paper gives an overview of MCAM'smajor function. At last, several examples are given to demonstrate MCAM's various capabilities.展开更多
基金supported by the IAEA Coordinate Research Project F1.30.15 Conceptual Development of Steady-State Compact Fusion Neutron Sources,the Knowledge Innovation Projects of Chinese Academy of Sciences(No.KJCX2-YW-N37)National Magnetic Confinement Fusion Science Program of China(No.2011GB114004)
文摘To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.
基金The project supported by Centurial Project ("Bai-Ren-Ji-Hua" Project) of Chinese Academy of Sciences. And supported by NSFC (No. 60273044) and NSF of Anhui Province (No. 01042201)
文摘Modeling is the kernel part of a digital reactor system. As an extensible platformfor reactor conceptual design, it is very important to study modeling technology and develop somekind of tools to speed up preparation of all classical computing models. This paper introducesthe background of the project and basic conception of digital reactor. MCAM is taken as anexample for modeling and its related technologies used are given. It is an interface program forMCNP geometry model developed by FDS team (ASIPP & HUT), and designed to run on windowssystem. MCAM aims at utilizing CAD technology to facilitate creation of MCNP geometry model.There have been two ways for MCAM to utilize CAD technology: (1) Making use of user interfacetechnology in aid of generation of MCNP geometry model; (2) Making use of existing 3D CADmodel to accelerate creation of MCNP geometry model. This paper gives an overview of MCAM'smajor function. At last, several examples are given to demonstrate MCAM's various capabilities.