Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
Power spectrum and cross-wavelet transform analysis was adopted to study the time-frequency characteristics and multiscale correlations between runoff,tidal range and salinity in the Changjiang Estuary based on the ru...Power spectrum and cross-wavelet transform analysis was adopted to study the time-frequency characteristics and multiscale correlations between runoff,tidal range and salinity in the Changjiang Estuary based on the runoff data collected at the Datong Station,the tidal range measured at the Baozhen Station,and the salinity at the Baogang Station from 2008 to 2009.The variations of the salinity showed significant periodicity at scales of 2-3,7-8,14-15 and 26-30 d.The correlation between the salinity and the runoff and the tidal range were found to be significantly related to shock at scales of 5-7,14-15,26-30 d and 0.5 a.The correlation between the runoff and the salinity was mainly in the same phase,while the correlation between the tidal range and the salinity was in the antiphase.Different frequency bands were related to different degrees,and their relevance increased as the resonance frequency decreased.In addition,changes of the seasonal runoff were obvious.Specifically,a point of discontinuity was reached in early June with a cycle of 7-8 d,which coincided with the periodicity of plum rains in the Changjiang-Huaihe region.High-frequency changes (8-16 d period) of the salinity corresponded to the time domain in January-April 2008,February-April 2009 and October-December 2009 and exhibited an approximately 0.5 a (184 d) long frequency oscillation.Short-period changes were found to be stronger than long-period changes.Cross-wavelet transforms for the salinity,the runoff and the tidal range revealed local features in the time domain,while the significant levels of different periodic oscillations were observed in the frequency domain.The correlation characteristics of the salinity and the runoff were significant in the 80-90 d frequency domain,indicating that the major impact of the runoff on the salinity was reflected in seasonal changes.The tidal range on the small scale of 14-15 and 30-32 d was more obvious than the runoff.展开更多
Anthropogenic nutrient discharge poses widespread threats to coastal ecosystems and has increased environmental gradients from coast to sea. Bacterioplankton play crucial roles in coastal biogeochemical cycling, and a...Anthropogenic nutrient discharge poses widespread threats to coastal ecosystems and has increased environmental gradients from coast to sea. Bacterioplankton play crucial roles in coastal biogeochemical cycling, and a variety of factors af fect bacterial community diversity and structure. We used 16 S r RNA gene pyrosequencing to investigate the spatial variation in bacterial community composition(BCC) across five sites on a coast-of fshore gradient in the East China Sea. Overall, bacterial alpha-diversity did not diff er across sites, except that richness and phylogenetic diversity were lower in the of fshore sites, and the highest alpha-diversity was found in the most landward site, with Chl-abeing the main factor. BCCs generally clustered into coastal and of fshore groups. Chl-a explained 12.3% of the variation in BCCs, more than that explained by either the physicochemical(5.7%) or spatial(8.5%) variables. Nutrients(particularly nitrate and phosphate), along with phytoplankton abundance, were more important than other physicochemical factors, co-explaining 20.0% of the variation in BCCs. Additionally, a series of discriminant families(primarily affiliated with Gammaproteobacteria and Alphaproteobacteria), whose relative abundances correlated with Chl-a, DIN, and phosphate concentrations, were identified, implying their potential to indicate phytoplankton blooms and nutrient enrichment in this marine ecosystem. This study provides insight into bacterioplankton response patterns along a coast-of fshore gradient, with phytoplankton abundance increasing in the of fshore sites. Time-series sampling across multiple transects should be performed to determine the seasonal and spatial patterns in bacterial diversity and community structure along this gradient.展开更多
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001,200905010 and 201005019the Research Programs of the Science and Technology Commission of Shanghai of China under contract No.09DZ1201200Young Scientist Foundation of the State Oceanic Administration of China under contract No.2008234
文摘Power spectrum and cross-wavelet transform analysis was adopted to study the time-frequency characteristics and multiscale correlations between runoff,tidal range and salinity in the Changjiang Estuary based on the runoff data collected at the Datong Station,the tidal range measured at the Baozhen Station,and the salinity at the Baogang Station from 2008 to 2009.The variations of the salinity showed significant periodicity at scales of 2-3,7-8,14-15 and 26-30 d.The correlation between the salinity and the runoff and the tidal range were found to be significantly related to shock at scales of 5-7,14-15,26-30 d and 0.5 a.The correlation between the runoff and the salinity was mainly in the same phase,while the correlation between the tidal range and the salinity was in the antiphase.Different frequency bands were related to different degrees,and their relevance increased as the resonance frequency decreased.In addition,changes of the seasonal runoff were obvious.Specifically,a point of discontinuity was reached in early June with a cycle of 7-8 d,which coincided with the periodicity of plum rains in the Changjiang-Huaihe region.High-frequency changes (8-16 d period) of the salinity corresponded to the time domain in January-April 2008,February-April 2009 and October-December 2009 and exhibited an approximately 0.5 a (184 d) long frequency oscillation.Short-period changes were found to be stronger than long-period changes.Cross-wavelet transforms for the salinity,the runoff and the tidal range revealed local features in the time domain,while the significant levels of different periodic oscillations were observed in the frequency domain.The correlation characteristics of the salinity and the runoff were significant in the 80-90 d frequency domain,indicating that the major impact of the runoff on the salinity was reflected in seasonal changes.The tidal range on the small scale of 14-15 and 30-32 d was more obvious than the runoff.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA092001)the National Natural Science Foundation of China(No.41406118)+4 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ14D060003)the Social Development Project of Ningbo(No.2014C50009)the Natural Science Foundation of Ningbo University(No.XKZSC1421)the Research Fund from the Collaborative Innovation Center for Zhejiang Marine HighEfficiency and Healthy Aquaculture,Ningbo,Chinathe KC Wong Magna Fund in Ningbo University
文摘Anthropogenic nutrient discharge poses widespread threats to coastal ecosystems and has increased environmental gradients from coast to sea. Bacterioplankton play crucial roles in coastal biogeochemical cycling, and a variety of factors af fect bacterial community diversity and structure. We used 16 S r RNA gene pyrosequencing to investigate the spatial variation in bacterial community composition(BCC) across five sites on a coast-of fshore gradient in the East China Sea. Overall, bacterial alpha-diversity did not diff er across sites, except that richness and phylogenetic diversity were lower in the of fshore sites, and the highest alpha-diversity was found in the most landward site, with Chl-abeing the main factor. BCCs generally clustered into coastal and of fshore groups. Chl-a explained 12.3% of the variation in BCCs, more than that explained by either the physicochemical(5.7%) or spatial(8.5%) variables. Nutrients(particularly nitrate and phosphate), along with phytoplankton abundance, were more important than other physicochemical factors, co-explaining 20.0% of the variation in BCCs. Additionally, a series of discriminant families(primarily affiliated with Gammaproteobacteria and Alphaproteobacteria), whose relative abundances correlated with Chl-a, DIN, and phosphate concentrations, were identified, implying their potential to indicate phytoplankton blooms and nutrient enrichment in this marine ecosystem. This study provides insight into bacterioplankton response patterns along a coast-of fshore gradient, with phytoplankton abundance increasing in the of fshore sites. Time-series sampling across multiple transects should be performed to determine the seasonal and spatial patterns in bacterial diversity and community structure along this gradient.