地球系统模式结果表明大气CO_(2)浓度的快速增加是气候变化重要的原因之一。卫星资料分析结果表明,大气CO_(2)浓度并非均一的,而是有明显的区域差异,以人类活动为主的碳排放会影响这一区域差异。这种空间差异如何影响区域地表气温对CO_...地球系统模式结果表明大气CO_(2)浓度的快速增加是气候变化重要的原因之一。卫星资料分析结果表明,大气CO_(2)浓度并非均一的,而是有明显的区域差异,以人类活动为主的碳排放会影响这一区域差异。这种空间差异如何影响区域地表气温对CO_(2)的敏感度,需要进一步深入系统的研究,利用地球系统模式BNU-ESM(Earth System Model of Beijing Normal University)进行数值模拟,并与观测数据进行比较,结果表明:在试验模拟结果2°C阈值内,非均匀CO_(2)浓度试验的CO_(2)浓度增加阈值范围小于均匀CO_(2)浓度试验结果,偏少约为4.3 ppm(106)。在区域尺度上,中国地表气温对CO_(2)敏感度普遍低于美国、欧洲以及北半球平均水平,这表明CO_(2)浓度空间差异对地表气温的敏感度的影响存在明显区域差异,很可能是CO_(2)浓度辐射效应与气候系统反馈过程的共同作用结果,这需要进一步研究。非均匀CO_(2)浓度对地表气温敏感度影响将会对碳中和目标下未来碳汇潜力精准估算提供科学支持。展开更多
The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the mul...The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the multi-model ensemble (MME) mean does not accurately reproduce the drastic interannual fluctuations.The correlation coefficient of the MME mean with the observations over all runs and all models was 0.77,which was larger than the largest value (0.65) from any single model ensemble.The results showed that winter temperatures are increasing at a higher rate than summer temperatures,and that winter temperatures exhibit stronger interannual variations.It was also found that the models underestimate the differences between winter and summer rates.The ensemble empirical mode decomposition technique was used to obtain six intrinsic mode functions (IMFs) for the modeled temperature and observations.The periods of the first two IMFs of the MME mean were 3.2 and 7.2,which represented the cycle of 2-7-yr oscillations.The periods of the third and fourth IMFs were 14.7 and 35.2,which reflected a multi-decadal oscillation of climate change.The corresponding periods of the first four IMFs were 2.69,7.24,16.15 and 52.5 in the observed data.The models overestimate the period of low frequency oscillation of temperature,but underestimate the period of high frequency variation.The warming rates from different representative concentration pathways (RCPs) were calculated,and the results showed that the temperature will increase by approximately 0.9℃,2.4℃,3.2℃ and 6.1℃ in the next century under the RCP2.6,RCP4.5,RCP6.0 and RCP8.5 scenarios,respectively.展开更多
Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system. In this paper, a new human--earth system...Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system. In this paper, a new human--earth system model, BNU- HESM1.0, constructed by combining the economic and climate damage components of the Dynamic Integrated Model of Climate Change and Economy to the BNU-ESM model, is introduced. The ability of BNU-HESM1.0 in simulating the global CO2 concentration and surface temperature is also evaluated. We find that, compared to observation, BNU-HESM1.0 underestimates the global CO2 concentration and its rising trend during 1965-2005, due to the uncertainty in the economic components. However, the surface temperature simulated by BNU-HESM1.0 is much closer to observation, resulting from the overestimates of surface temperature by the original BNU-ESM model. The uncertainty of BNU-ESM falls within the range of present earth system uncertainty, so it is the economic and climate damage component of BNU-HESM 1.0 that needs to be improved through further study. However, the main purpose of this paper is to introduce a new approach to investigate the complex relationship between human activity and the earth system. It is hoped that it will inspire further ideas that prove valuable in guiding human activities appropriate for a sustainable future climate.展开更多
We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Ba...We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.展开更多
Based on observations and 12 simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5) models, cli- matic extremes and their changes over China in the past and under the future scenarios of three Repres...Based on observations and 12 simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5) models, cli- matic extremes and their changes over China in the past and under the future scenarios of three Representative Concentration Pathways (RCPs) are analyzed. In observations, frost days (FD) and low-temperature threshold days (TN10P) show a de- creasing trend, and summer days (SU), high-temperature threshold days (TX90P), heavy precipitation days (R20), and the contribution of heavy precipitation days (P95T) show an increasing trend. Most models are able to simulate the main char- acteristics of most extreme indices. In particular, the mean FD and TX90P are reproduced the best, and the basic trends of FD, TN10P, SU and TX90P are represented. For the FD and SU indexes, most models show good ability in capturing the spatial differences between the mean state of the periods 1986--2005 and 1961-80; however, for other indices, the simulation abilities for spatial disparity are less satisfactory and need to be improved. Under the high emissions scenario of RCP8.5, the century-scale linear changes of the multi-model ensemble (MME) for FD, SU, TN10P, TX90P, R20 and P95T are -46.9, 46.0, -27.1, 175.4, and 2.9 days, and 9.9%, respectively; and the spatial change scope for each index is consistent with the emissions intensity. Due to the complexities of physical process pararneterizations and the limitation of forcing data, great uncertainty still exists with respect to the simulation of climatic extremes.展开更多
In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to...In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change.展开更多
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major f...The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).展开更多
文摘地球系统模式结果表明大气CO_(2)浓度的快速增加是气候变化重要的原因之一。卫星资料分析结果表明,大气CO_(2)浓度并非均一的,而是有明显的区域差异,以人类活动为主的碳排放会影响这一区域差异。这种空间差异如何影响区域地表气温对CO_(2)的敏感度,需要进一步深入系统的研究,利用地球系统模式BNU-ESM(Earth System Model of Beijing Normal University)进行数值模拟,并与观测数据进行比较,结果表明:在试验模拟结果2°C阈值内,非均匀CO_(2)浓度试验的CO_(2)浓度增加阈值范围小于均匀CO_(2)浓度试验结果,偏少约为4.3 ppm(106)。在区域尺度上,中国地表气温对CO_(2)敏感度普遍低于美国、欧洲以及北半球平均水平,这表明CO_(2)浓度空间差异对地表气温的敏感度的影响存在明显区域差异,很可能是CO_(2)浓度辐射效应与气候系统反馈过程的共同作用结果,这需要进一步研究。非均匀CO_(2)浓度对地表气温敏感度影响将会对碳中和目标下未来碳汇潜力精准估算提供科学支持。
基金supported by the General Project of the National Natural Sciences Foundation of China (Grant Nos. 41105074 and 41275108)the Innovation Key Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-202)+3 种基金the National Basic Research Program of China (2012CB956201)the Open Research Fund of the Key Laboratory of Digital Earth Science, Center for Earth ObservationDigital Earth, Chinese Academy of Sciences (Grant No.2011LDE010)the Scientific Research Fund of Henan Polytechnic University (Grant No. B2011-038)
文摘The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the multi-model ensemble (MME) mean does not accurately reproduce the drastic interannual fluctuations.The correlation coefficient of the MME mean with the observations over all runs and all models was 0.77,which was larger than the largest value (0.65) from any single model ensemble.The results showed that winter temperatures are increasing at a higher rate than summer temperatures,and that winter temperatures exhibit stronger interannual variations.It was also found that the models underestimate the differences between winter and summer rates.The ensemble empirical mode decomposition technique was used to obtain six intrinsic mode functions (IMFs) for the modeled temperature and observations.The periods of the first two IMFs of the MME mean were 3.2 and 7.2,which represented the cycle of 2-7-yr oscillations.The periods of the third and fourth IMFs were 14.7 and 35.2,which reflected a multi-decadal oscillation of climate change.The corresponding periods of the first four IMFs were 2.69,7.24,16.15 and 52.5 in the observed data.The models overestimate the period of low frequency oscillation of temperature,but underestimate the period of high frequency variation.The warming rates from different representative concentration pathways (RCPs) were calculated,and the results showed that the temperature will increase by approximately 0.9℃,2.4℃,3.2℃ and 6.1℃ in the next century under the RCP2.6,RCP4.5,RCP6.0 and RCP8.5 scenarios,respectively.
基金funded by the National Key Program for Global Change Research of China(Grant No.2010CB950504)the National Basic Research Program of China(973 Program)(Grant No. 2012CB95570001)the nationallevel major cultivation project of Guangdong Province entitled:"The construction and application of coupled earth system and social economic models"(Grant No.2014GKXM058)
文摘Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system. In this paper, a new human--earth system model, BNU- HESM1.0, constructed by combining the economic and climate damage components of the Dynamic Integrated Model of Climate Change and Economy to the BNU-ESM model, is introduced. The ability of BNU-HESM1.0 in simulating the global CO2 concentration and surface temperature is also evaluated. We find that, compared to observation, BNU-HESM1.0 underestimates the global CO2 concentration and its rising trend during 1965-2005, due to the uncertainty in the economic components. However, the surface temperature simulated by BNU-HESM1.0 is much closer to observation, resulting from the overestimates of surface temperature by the original BNU-ESM model. The uncertainty of BNU-ESM falls within the range of present earth system uncertainty, so it is the economic and climate damage component of BNU-HESM 1.0 that needs to be improved through further study. However, the main purpose of this paper is to introduce a new approach to investigate the complex relationship between human activity and the earth system. It is hoped that it will inspire further ideas that prove valuable in guiding human activities appropriate for a sustainable future climate.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090000)the National Key Program for Developing Basic Sciences of China (Grant No. 2009CB421401)+1 种基金the Special Fund for Meteorological Scientific Research in Public Interest (Grant No. GYHY201106028)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-202)
文摘We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.
基金funded by the National Key Program for Global Change Research of China (Grant No.2010CB950500)the General Project of the National Natural Science Foundation of China (Grant No.41275108)the National High Technology Research and Development Program of China (Grant No.2010AA012305)
文摘Based on observations and 12 simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5) models, cli- matic extremes and their changes over China in the past and under the future scenarios of three Representative Concentration Pathways (RCPs) are analyzed. In observations, frost days (FD) and low-temperature threshold days (TN10P) show a de- creasing trend, and summer days (SU), high-temperature threshold days (TX90P), heavy precipitation days (R20), and the contribution of heavy precipitation days (P95T) show an increasing trend. Most models are able to simulate the main char- acteristics of most extreme indices. In particular, the mean FD and TX90P are reproduced the best, and the basic trends of FD, TN10P, SU and TX90P are represented. For the FD and SU indexes, most models show good ability in capturing the spatial differences between the mean state of the periods 1986--2005 and 1961-80; however, for other indices, the simulation abilities for spatial disparity are less satisfactory and need to be improved. Under the high emissions scenario of RCP8.5, the century-scale linear changes of the multi-model ensemble (MME) for FD, SU, TN10P, TX90P, R20 and P95T are -46.9, 46.0, -27.1, 175.4, and 2.9 days, and 9.9%, respectively; and the spatial change scope for each index is consistent with the emissions intensity. Due to the complexities of physical process pararneterizations and the limitation of forcing data, great uncertainty still exists with respect to the simulation of climatic extremes.
基金This work was supported by the National Key R&D Program of China[grant numbers 2016YFA0600403 and 2016YFA0602501]the General Project of the National Natural Science Foundation of China[grant number 41875134].
文摘In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2010AA012305)the General Project of the National Natural Science Foundation of China (Grant No. 41275108)+1 种基金the National Basic Research Program of China (Grant No. 2010CB950504)the Fundamental Research Funds for the Central Universities (Grant No. 2012YBXS27)
文摘The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).