To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The...To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential.展开更多
渝东石柱地区志留系龙马溪组页岩地层发育特殊的纤维状方解石脉体。为揭示其流体来源及形成机理,结合岩石学及地球化学特征等开展系统分析。研究表明,纤维状方解石脉(FCV)以顺层或近平行层面充填于黑色粉砂质页岩和泥质粉砂岩微裂缝中,...渝东石柱地区志留系龙马溪组页岩地层发育特殊的纤维状方解石脉体。为揭示其流体来源及形成机理,结合岩石学及地球化学特征等开展系统分析。研究表明,纤维状方解石脉(FCV)以顺层或近平行层面充填于黑色粉砂质页岩和泥质粉砂岩微裂缝中,脉体宽0.1~4.0 cm、横向延伸一般为0.5~8.0 m。纤维状方解石晶体以柱状、纤维状垂直裂缝壁生长为主,多与石英共生产出。晶体表面洁净,局部见方解石压力影、机械双晶及晶体间锯齿状晶界。阴极发光下纤维状方解石呈暗红色-橘红色;碳-氧同位素分析表明δ13 C PDB略偏负、δ18 O PDB负异常明显(δ13 C PDB、δ18 O PDB平均值分别为-1.549‰及-12.654‰),指示其形成过程中受温度升高影响明显;流体包裹体均一温度平均值为159.5℃。结合区域构造-热演化史分析,结果表明石柱地区龙马溪组FCV形成流体具造山带同构造期超高压有机流体性质特征,为中-晚三叠世印支期同构造作用驱动深部流体叠加生烃超高压释放导致水力压裂所致,裂缝的开启导致孔隙流体的过饱和及纤维状方解石的快速沉淀。展开更多
This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling core...This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling cores and thin section observation and geochemical analysis. The reservoirs of 2^(nd) member are distributed in the middle part of the stratum. The reservoir quality is controlled by supergene karst and the distribution of mound-shoal complex. The bedded elongated isolated algal framework solution-cave and the residual "grape-lace" cave, which are partially filled with multi-stage dolosparite, constituted the main reservoir space of the 2^(nd) member. There is no asphalt distribution in the pores. The pore connectivity is poor, and the porosity and permeability of the reservoir is relatively low. The reservoirs of 4^(th) member were distributed in the upper and top part of the stratum. The reservoir quality is controlled by burial dissolution and the distribution of mound-shoal complex. The bedded algal framework solution-pores or caves, intercrystalline pores and intercrystalline dissolved pores constituted the main reservoir space of the 4^(th) member. It's partially filled with asphalt and quartz, without any dolosparite fillings in the pores and caves. The pore connectivity is good. Most of the 4^(th) member reservoirs had medium-low porosity and low permeability, and, locally, medium-high porosity and medium permeability. Affected by the development of mound-shoal complex and heterogeneous dissolution, the platform margin along Ningqiang, Guangyuan, Jiange and Langzhong is the most favorable region for reservoir development. Deep buried Dengying Formation in the guangyuan and langzhong areas should be the most important hydrocarbon target for the future exploration.展开更多
Based on outcrop characteristics, combined with regional tectonic background, drilling and geophysical data, the sedimentary characteristics of the Middle Permian Maokou Formation in the northern Sichuan Basin was stu...Based on outcrop characteristics, combined with regional tectonic background, drilling and geophysical data, the sedimentary characteristics of the Middle Permian Maokou Formation in the northern Sichuan Basin was studied by means of macroscopic and microscopic observation, geochemical element test, total organic carbon content and vitrinite reflectance measurement. There is a set of deep-water sediments rich in organic matter in the Guangyuan-Wangcang area of northern Sichuan during the late depositional period of the Middle Permian Maokou Formation. The strata are distributed from northwest to southeast, with thickness of 10–30 m, mainly composed of siliceous rocks and siliceous mudstones, intercalated with gravity flow deposits. Siliceous rocks and siliceous mudstones are characterized by thin single layer, flat bedding and rich siliceous radiolarians, calthrop and brachiopod with small body and thin shell, belonging to the typical sedimentary characteristics of deep-water trough facies. The contents of Cu, Co, Mo, Ni and the ratio of Ni to Co in the geochemical tests all indicate that the siliceous rocks are products of deep-water reducing environment. The TOC value ranges from 3.21% to 8.19%, with an average of 5.53%, indicating that the siliceous rocks have good hydrocarbon generation ability. The south side of the trough is in platform margin facies with high energy, and the sediments are mainly thick massive micritic-calcsparite biogenic(clastic) limestone, which is conducive to the formation and evolution of the reservoir. During the late sedimentary period of the Maokou Formation, the northward subduction and extension of the oceanic crust at the northwestern margin of the Yangtze Plate provided the internal dynamic conditions for the formation of the "Guangyuan-Wangcang" trough. According to the location, sedimentary characteristics and formation dynamics of the trough, it is similar to the "Kaijiang-Liangping" trough during Late Permian proposed by previous researchers. It is believed that the "Kaijiang-Liangping" trough already had its embryonic form during the Late Middle Permian.展开更多
1 Introduction The Lower Silurian Longmaxl Formation is the most prolific shale gas producing unit in the Sichuan Basin by the large thickness and rich resources, which also indicate a bright exploration prospect for ...1 Introduction The Lower Silurian Longmaxl Formation is the most prolific shale gas producing unit in the Sichuan Basin by the large thickness and rich resources, which also indicate a bright exploration prospect for the unconventional shale gas.展开更多
1 Introduction The organic-rich shale in Lower Silurian Longmaxi formation Sichuan Basin is marine sedimentary strata, and it has large thickness and rich resources. Therefore, it is one of the most important parts in...1 Introduction The organic-rich shale in Lower Silurian Longmaxi formation Sichuan Basin is marine sedimentary strata, and it has large thickness and rich resources. Therefore, it is one of the most important parts in unconventional oil and gas reservoir exploration. Eastern Sichuan area is located in high and deep structural belt, so influenced by the factors of deep-buried structure, intense transformation and fault development, organic-rich shale belts' distribution is unclear (Fig.1).展开更多
基金Supported by the National Science and Technology Major Project(2016ZX05007004-001)Innovation Fund Project of CNPC Carbonate Rock Key Laboratory(RIPED-HZDZY-2019-JS-695).
文摘To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential.
文摘渝东石柱地区志留系龙马溪组页岩地层发育特殊的纤维状方解石脉体。为揭示其流体来源及形成机理,结合岩石学及地球化学特征等开展系统分析。研究表明,纤维状方解石脉(FCV)以顺层或近平行层面充填于黑色粉砂质页岩和泥质粉砂岩微裂缝中,脉体宽0.1~4.0 cm、横向延伸一般为0.5~8.0 m。纤维状方解石晶体以柱状、纤维状垂直裂缝壁生长为主,多与石英共生产出。晶体表面洁净,局部见方解石压力影、机械双晶及晶体间锯齿状晶界。阴极发光下纤维状方解石呈暗红色-橘红色;碳-氧同位素分析表明δ13 C PDB略偏负、δ18 O PDB负异常明显(δ13 C PDB、δ18 O PDB平均值分别为-1.549‰及-12.654‰),指示其形成过程中受温度升高影响明显;流体包裹体均一温度平均值为159.5℃。结合区域构造-热演化史分析,结果表明石柱地区龙马溪组FCV形成流体具造山带同构造期超高压有机流体性质特征,为中-晚三叠世印支期同构造作用驱动深部流体叠加生烃超高压释放导致水力压裂所致,裂缝的开启导致孔隙流体的过饱和及纤维状方解石的快速沉淀。
基金Supported by the China National Science and Technology Major Project(2017ZX05001001-002)
文摘This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling cores and thin section observation and geochemical analysis. The reservoirs of 2^(nd) member are distributed in the middle part of the stratum. The reservoir quality is controlled by supergene karst and the distribution of mound-shoal complex. The bedded elongated isolated algal framework solution-cave and the residual "grape-lace" cave, which are partially filled with multi-stage dolosparite, constituted the main reservoir space of the 2^(nd) member. There is no asphalt distribution in the pores. The pore connectivity is poor, and the porosity and permeability of the reservoir is relatively low. The reservoirs of 4^(th) member were distributed in the upper and top part of the stratum. The reservoir quality is controlled by burial dissolution and the distribution of mound-shoal complex. The bedded algal framework solution-pores or caves, intercrystalline pores and intercrystalline dissolved pores constituted the main reservoir space of the 4^(th) member. It's partially filled with asphalt and quartz, without any dolosparite fillings in the pores and caves. The pore connectivity is good. Most of the 4^(th) member reservoirs had medium-low porosity and low permeability, and, locally, medium-high porosity and medium permeability. Affected by the development of mound-shoal complex and heterogeneous dissolution, the platform margin along Ningqiang, Guangyuan, Jiange and Langzhong is the most favorable region for reservoir development. Deep buried Dengying Formation in the guangyuan and langzhong areas should be the most important hydrocarbon target for the future exploration.
基金Supported by the China National Science and Technology Major Project(2016ZX05007004-001,2017ZX05001001-002)PetroChina Innovation Foundation(2018D-5007-0105)Scientific Research Starting Project of SWPU(2017QHZ005)。
文摘Based on outcrop characteristics, combined with regional tectonic background, drilling and geophysical data, the sedimentary characteristics of the Middle Permian Maokou Formation in the northern Sichuan Basin was studied by means of macroscopic and microscopic observation, geochemical element test, total organic carbon content and vitrinite reflectance measurement. There is a set of deep-water sediments rich in organic matter in the Guangyuan-Wangcang area of northern Sichuan during the late depositional period of the Middle Permian Maokou Formation. The strata are distributed from northwest to southeast, with thickness of 10–30 m, mainly composed of siliceous rocks and siliceous mudstones, intercalated with gravity flow deposits. Siliceous rocks and siliceous mudstones are characterized by thin single layer, flat bedding and rich siliceous radiolarians, calthrop and brachiopod with small body and thin shell, belonging to the typical sedimentary characteristics of deep-water trough facies. The contents of Cu, Co, Mo, Ni and the ratio of Ni to Co in the geochemical tests all indicate that the siliceous rocks are products of deep-water reducing environment. The TOC value ranges from 3.21% to 8.19%, with an average of 5.53%, indicating that the siliceous rocks have good hydrocarbon generation ability. The south side of the trough is in platform margin facies with high energy, and the sediments are mainly thick massive micritic-calcsparite biogenic(clastic) limestone, which is conducive to the formation and evolution of the reservoir. During the late sedimentary period of the Maokou Formation, the northward subduction and extension of the oceanic crust at the northwestern margin of the Yangtze Plate provided the internal dynamic conditions for the formation of the "Guangyuan-Wangcang" trough. According to the location, sedimentary characteristics and formation dynamics of the trough, it is similar to the "Kaijiang-Liangping" trough during Late Permian proposed by previous researchers. It is believed that the "Kaijiang-Liangping" trough already had its embryonic form during the Late Middle Permian.
文摘1 Introduction The Lower Silurian Longmaxl Formation is the most prolific shale gas producing unit in the Sichuan Basin by the large thickness and rich resources, which also indicate a bright exploration prospect for the unconventional shale gas.
文摘1 Introduction The organic-rich shale in Lower Silurian Longmaxi formation Sichuan Basin is marine sedimentary strata, and it has large thickness and rich resources. Therefore, it is one of the most important parts in unconventional oil and gas reservoir exploration. Eastern Sichuan area is located in high and deep structural belt, so influenced by the factors of deep-buried structure, intense transformation and fault development, organic-rich shale belts' distribution is unclear (Fig.1).