In this study,a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum,China.A bio-aeroso...In this study,a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum,China.A bio-aerosol sampler was used for sampling in four seasons in 2016.Culture-dependent and-independent methods were taken to acquire airborne fungal concentration and purified strains;by the extraction of genomic DNA,amplification of fungal ITS rRNA gene region,sequencing,and phylogenetic analysis,thereafter the fungal community composition and distribution characteristics of different study sites were clarified.We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites.The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m^(3),no significant difference between the two sites at the Tiantishan Grottoes,with obvious characteristics of seasonal variation,in winter and spring were higher than in summer and autumn.Also,there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum,the outside of the museum was far more than the inside of the museum in the four seasons,particularly in the winter.Eight fungal genera were detected,including Cladosporium,Penicillium,Alternaria,and Filobasidium as the dominant groups.The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution.Relative humidity,temperature and seasonal rainfall influence airborne fungal distribution.Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings.This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.展开更多
Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disa...Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.展开更多
基金This study was supported by the National Natural Science Foundation of China(Nos.32060258,32060277)Science and Technology Plan of Gansu Province(Nos.20YF8WF016+1 种基金18JR3RA004)the"Light of West China"Program of the Chinese Academy of Sciences and Project of Gansu Cultural Relics Bureau(GWJ202011).
文摘In this study,a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum,China.A bio-aerosol sampler was used for sampling in four seasons in 2016.Culture-dependent and-independent methods were taken to acquire airborne fungal concentration and purified strains;by the extraction of genomic DNA,amplification of fungal ITS rRNA gene region,sequencing,and phylogenetic analysis,thereafter the fungal community composition and distribution characteristics of different study sites were clarified.We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites.The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m^(3),no significant difference between the two sites at the Tiantishan Grottoes,with obvious characteristics of seasonal variation,in winter and spring were higher than in summer and autumn.Also,there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum,the outside of the museum was far more than the inside of the museum in the four seasons,particularly in the winter.Eight fungal genera were detected,including Cladosporium,Penicillium,Alternaria,and Filobasidium as the dominant groups.The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution.Relative humidity,temperature and seasonal rainfall influence airborne fungal distribution.Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings.This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.
基金supported by the National Natural Science Foundation of China(No.32260292,32060277)National Key Research and Development Program of China(No.2020YFC1522200)+2 种基金Shanxi Provincial Basic Research Program of China(No.202303021212060)Shanxi Provincial Cultural Relics Technology Program of China(No.2023KT15)The Local Project Guided by the Central Government of Gansu Province(No.YDZX20216200001728).
文摘Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.