Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For inst...Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel.展开更多
Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative fo...Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative for comprehending the dynamics of BP infection and discerning biomarkers indicative of the host cell response process.Methods:mRNA extraction from BP-infected mouse macrophages constituted the initial step of our study.Employing gene expression arrays,the extracted RNA underwent conversion into digital signals.The percentile shift method facilitated data processing,with the identification of genes manifesting significant differences accomplished through the application of the t-test.Subsequently,a comprehensive analysis involving Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway was conducted on the differentially expressed genes(DEGs).Leveraging the ESTIMATE algorithm,gene signatures were utilized to compute risk scores for gene expression data.Support vector machine analysis and gene enrichment scores were instrumental in establishing correlations between biomarkers and macrophages,followed by an evaluation of the predictive power of the identified biomarkers.Results:The functional and pathway associations of the DEGs predominantly centered around G protein-coupled receptors.A noteworthy positive correlation emerged between the blue module,consisting of 416 genes,and the StromaScore.FZD4,identified through support vector machine analysis among intersecting genes,indicated a robust interaction with macrophages,suggesting its potential as a robust biomarker.FZD4 exhibited commendable predictive efficacy,with BP infection inducing its expression in both macrophages and mouse lung tissue.Western blotting in macrophages confirmed a significant upregulation of FZD4 expression from 0.5 to 24 h post-infection.In mouse lung tissue,FZD4 manifested higher expression in the cytoplasm of pulmonary epithelial cells in BP-infected lungs than in the control group.Conclusion:Thesefindings underscore the upregulation of FZD4 expression by BP in both macrophages and lung tissue,pointing to its prospective role as a biomarker in the pathogenesis of BP infection.展开更多
基金support by the National Natural Science Foundation of China(NSFC,Grant Nos.12002324,12372341,12172342)。
文摘Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel.
基金The study was supported by Yuying Program Incubation Project of General Hospital of Center Theater(ZZYFH202104)Wuhan Young and Middle-Aged Medical Backbone Talent Project 2020(2020-55)Logistics Research Program Project 2019(CLB19J029).
文摘Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative for comprehending the dynamics of BP infection and discerning biomarkers indicative of the host cell response process.Methods:mRNA extraction from BP-infected mouse macrophages constituted the initial step of our study.Employing gene expression arrays,the extracted RNA underwent conversion into digital signals.The percentile shift method facilitated data processing,with the identification of genes manifesting significant differences accomplished through the application of the t-test.Subsequently,a comprehensive analysis involving Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway was conducted on the differentially expressed genes(DEGs).Leveraging the ESTIMATE algorithm,gene signatures were utilized to compute risk scores for gene expression data.Support vector machine analysis and gene enrichment scores were instrumental in establishing correlations between biomarkers and macrophages,followed by an evaluation of the predictive power of the identified biomarkers.Results:The functional and pathway associations of the DEGs predominantly centered around G protein-coupled receptors.A noteworthy positive correlation emerged between the blue module,consisting of 416 genes,and the StromaScore.FZD4,identified through support vector machine analysis among intersecting genes,indicated a robust interaction with macrophages,suggesting its potential as a robust biomarker.FZD4 exhibited commendable predictive efficacy,with BP infection inducing its expression in both macrophages and mouse lung tissue.Western blotting in macrophages confirmed a significant upregulation of FZD4 expression from 0.5 to 24 h post-infection.In mouse lung tissue,FZD4 manifested higher expression in the cytoplasm of pulmonary epithelial cells in BP-infected lungs than in the control group.Conclusion:Thesefindings underscore the upregulation of FZD4 expression by BP in both macrophages and lung tissue,pointing to its prospective role as a biomarker in the pathogenesis of BP infection.