Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the pe...Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the performance of miniature display devices can be enhanced to a higher level.Miniature display technology,such as virtual reality display,has achieved original commercial success,and was initially applied to immersive games and interactive scenes.While the consumer market has quickly adopted this technology,several areas remain for improvement,including concerns around bulkiness,dual-channel display,and noise reduction.Here,we experimentally realize a quantum meta-hologram concept demonstration of a miniature display.We fabricate an ultracompact meta-hologram based on 1μm thick titanium dioxide(TiO_(2)).The meta-hologram can be remotely switched with heralding technique and is robust against noise with the quantum entangled source.The platform can alter the miniature display channel by manipulating heralding photons’polarization,removing speckles and multiple reflective light noise,improving imaging contrast,and potentially decreasing device weight.Imaging contrast increases from 0.36 dB under speckle noise influences to 6.8 dB in quantum correlation imaging.This approach has the potential to miniaturize quantum displays and quantum communication devices.展开更多
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
基金supported by the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No.AoE/P-502/20,CRF Project:C5031-22G and C1015-21E,and GRF Project:15303521,11310522,11305223,11300123,16304020,and 16306521)the Department of Science and Technology of Guangdong Province (Grant No.2020B1515120073)+1 种基金the City University of Hong Kong (Grant Nos.9380131,9610628,and 7005867)the National Key R&D Program of China (Grant No.2022YFA1404700).
文摘Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the performance of miniature display devices can be enhanced to a higher level.Miniature display technology,such as virtual reality display,has achieved original commercial success,and was initially applied to immersive games and interactive scenes.While the consumer market has quickly adopted this technology,several areas remain for improvement,including concerns around bulkiness,dual-channel display,and noise reduction.Here,we experimentally realize a quantum meta-hologram concept demonstration of a miniature display.We fabricate an ultracompact meta-hologram based on 1μm thick titanium dioxide(TiO_(2)).The meta-hologram can be remotely switched with heralding technique and is robust against noise with the quantum entangled source.The platform can alter the miniature display channel by manipulating heralding photons’polarization,removing speckles and multiple reflective light noise,improving imaging contrast,and potentially decreasing device weight.Imaging contrast increases from 0.36 dB under speckle noise influences to 6.8 dB in quantum correlation imaging.This approach has the potential to miniaturize quantum displays and quantum communication devices.